MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Structured version   Visualization version   GIF version

Theorem efcvx 26379
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
2 simpl2 1190 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
3 simpl3 1191 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
4 reeff1o 26377 . . . . . . 7 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
5 f1of 6833 . . . . . . 7 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
64, 5ax-mp 5 . . . . . 6 (exp ↾ ℝ):ℝ⟶ℝ+
7 rpssre 13007 . . . . . 6 + ⊆ ℝ
8 fss 6733 . . . . . 6 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
96, 7, 8mp2an 691 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
10 iccssre 13432 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
111, 2, 10syl2anc 583 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ)
12 fssres2 6759 . . . . 5 (((exp ↾ ℝ):ℝ⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
139, 11, 12sylancr 586 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 ax-resscn 11189 . . . . 5 ℝ ⊆ ℂ
1511, 14sstrdi 3990 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℂ)
16 efcn 26373 . . . . . 6 exp ∈ (ℂ–cn→ℂ)
17 rescncf 24810 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1815, 16, 17mpisyl 21 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
19 cncfcdm 24811 . . . . 5 ((ℝ ⊆ ℂ ∧ (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2014, 18, 19sylancr 586 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2113, 20mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
22 reefiso 26378 . . . . . 6 (exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
2322a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ ℝ) Isom < , < (ℝ, ℝ+))
24 ioossre 13411 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
2524a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ)
26 eqidd 2728 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵)))
27 isores3 7337 . . . . 5 (((exp ↾ ℝ) Isom < , < (ℝ, ℝ+) ∧ (𝐴(,)𝐵) ⊆ ℝ ∧ ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵))) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
2823, 25, 26, 27syl3anc 1369 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
29 ssid 4000 . . . . . . 7 ℝ ⊆ ℝ
30 fss 6733 . . . . . . . . 9 (((exp ↾ ℝ):ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ):ℝ⟶ℂ)
319, 14, 30mp2an 691 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℂ
32 eqid 2727 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3332tgioo2 24712 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3432, 33dvres 25833 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (exp ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3514, 31, 34mpanl12 701 . . . . . . 7 ((ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3629, 11, 35sylancr 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3711resabs1d 6010 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴[,]𝐵)) = (exp ↾ (𝐴[,]𝐵)))
3837oveq2d 7430 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = (ℝ D (exp ↾ (𝐴[,]𝐵))))
39 reelprrecn 11224 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
40 eff 16051 . . . . . . . . . 10 exp:ℂ⟶ℂ
41 ssid 4000 . . . . . . . . . 10 ℂ ⊆ ℂ
42 dvef 25905 . . . . . . . . . . . . 13 (ℂ D exp) = exp
4342dmeqi 5901 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
4440fdmi 6728 . . . . . . . . . . . 12 dom exp = ℂ
4543, 44eqtri 2755 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
4614, 45sseqtrri 4015 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
47 dvres3 25835 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
4839, 40, 41, 46, 47mp4an 692 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
4942reseq1i 5975 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
5048, 49eqtri 2755 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
5150a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ))
52 iccntr 24730 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
531, 2, 52syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5451, 53reseq12d 5980 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
5536, 38, 543eqtr3d 2775 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
56 isoeq1 7319 . . . . 5 ((ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5755, 56syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5828, 57mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
59 simpr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
60 eqid 2727 . . 3 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
611, 2, 3, 21, 58, 59, 60dvcvx 25946 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))))
62 ax-1cn 11190 . . . . . . 7 1 ∈ ℂ
63 ioossre 13411 . . . . . . . . 9 (0(,)1) ⊆ ℝ
6463, 59sselid 3976 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
6564recnd 11266 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
66 nncan 11513 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
6762, 65, 66sylancr 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
6867oveq1d 7429 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
6968oveq1d 7429 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
70 ioossicc 13436 . . . . . . 7 (0(,)1) ⊆ (0[,]1)
7170, 59sselid 3976 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
72 iirev 24843 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
7371, 72syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
74 lincmb01cmp 13498 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7573, 74syldan 590 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7669, 75eqeltrrd 2829 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7776fvresd 6911 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
781rexrd 11288 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
792rexrd 11288 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
801, 2, 3ltled 11386 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
81 lbicc2 13467 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8278, 79, 80, 81syl3anc 1369 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
8382fvresd 6911 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐴) = (exp‘𝐴))
8483oveq2d 7430 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) = (𝑇 · (exp‘𝐴)))
85 ubicc2 13468 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
8678, 79, 80, 85syl3anc 1369 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
8786fvresd 6911 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐵) = (exp‘𝐵))
8887oveq2d 7430 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵)) = ((1 − 𝑇) · (exp‘𝐵)))
8984, 88oveq12d 7432 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))) = ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
9061, 77, 893brtr3d 5173 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wss 3944  {cpr 4626   class class class wbr 5142  dom cdm 5672  ran crn 5673  cres 5674  cima 5675  wf 6538  1-1-ontowf1o 6541  cfv 6542   Isom wiso 6543  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  *cxr 11271   < clt 11272  cle 11273  cmin 11468  +crp 13000  (,)cioo 13350  [,]cicc 13353  expce 16031  TopOpenctopn 17396  topGenctg 17412  fldccnfld 21272  intcnt 22914  cnccncf 24789   D cdv 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator