MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Structured version   Visualization version   GIF version

Theorem efcvx 26375
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
2 simpl2 1193 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
3 simpl3 1194 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
4 reeff1o 26373 . . . . . . 7 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
5 f1of 6768 . . . . . . 7 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
64, 5ax-mp 5 . . . . . 6 (exp ↾ ℝ):ℝ⟶ℝ+
7 rpssre 12919 . . . . . 6 + ⊆ ℝ
8 fss 6672 . . . . . 6 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
96, 7, 8mp2an 692 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
10 iccssre 13350 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
111, 2, 10syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ)
12 fssres2 6696 . . . . 5 (((exp ↾ ℝ):ℝ⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
139, 11, 12sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 ax-resscn 11085 . . . . 5 ℝ ⊆ ℂ
1511, 14sstrdi 3950 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℂ)
16 efcn 26369 . . . . . 6 exp ∈ (ℂ–cn→ℂ)
17 rescncf 24806 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1815, 16, 17mpisyl 21 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
19 cncfcdm 24807 . . . . 5 ((ℝ ⊆ ℂ ∧ (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2014, 18, 19sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (exp ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ))
2113, 20mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
22 reefiso 26374 . . . . . 6 (exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
2322a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp ↾ ℝ) Isom < , < (ℝ, ℝ+))
24 ioossre 13328 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
2524a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ)
26 eqidd 2730 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵)))
27 isores3 7276 . . . . 5 (((exp ↾ ℝ) Isom < , < (ℝ, ℝ+) ∧ (𝐴(,)𝐵) ⊆ ℝ ∧ ((exp ↾ ℝ) “ (𝐴(,)𝐵)) = ((exp ↾ ℝ) “ (𝐴(,)𝐵))) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
2823, 25, 26, 27syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
29 ssid 3960 . . . . . . 7 ℝ ⊆ ℝ
30 fss 6672 . . . . . . . . 9 (((exp ↾ ℝ):ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ):ℝ⟶ℂ)
319, 14, 30mp2an 692 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℂ
32 eqid 2729 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
33 tgioo4 24709 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3432, 33dvres 25828 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (exp ↾ ℝ):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3514, 31, 34mpanl12 702 . . . . . . 7 ((ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3629, 11, 35sylancr 587 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
3711resabs1d 5963 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ ℝ) ↾ (𝐴[,]𝐵)) = (exp ↾ (𝐴[,]𝐵)))
3837oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D ((exp ↾ ℝ) ↾ (𝐴[,]𝐵))) = (ℝ D (exp ↾ (𝐴[,]𝐵))))
39 reelprrecn 11120 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
40 eff 16006 . . . . . . . . . 10 exp:ℂ⟶ℂ
41 ssid 3960 . . . . . . . . . 10 ℂ ⊆ ℂ
42 dvef 25900 . . . . . . . . . . . . 13 (ℂ D exp) = exp
4342dmeqi 5851 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
4440fdmi 6667 . . . . . . . . . . . 12 dom exp = ℂ
4543, 44eqtri 2752 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
4614, 45sseqtrri 3987 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
47 dvres3 25830 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
4839, 40, 41, 46, 47mp4an 693 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
4942reseq1i 5930 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
5048, 49eqtri 2752 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
5150a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ))
52 iccntr 24726 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
531, 2, 52syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5451, 53reseq12d 5935 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ ℝ)) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
5536, 38, 543eqtr3d 2772 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)))
56 isoeq1 7258 . . . . 5 ((ℝ D (exp ↾ (𝐴[,]𝐵))) = ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5755, 56syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))) ↔ ((exp ↾ ℝ) ↾ (𝐴(,)𝐵)) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵)))))
5828, 57mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (exp ↾ (𝐴[,]𝐵))) Isom < , < ((𝐴(,)𝐵), ((exp ↾ ℝ) “ (𝐴(,)𝐵))))
59 simpr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
60 eqid 2729 . . 3 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
611, 2, 3, 21, 58, 59, 60dvcvx 25941 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))))
62 ax-1cn 11086 . . . . . . 7 1 ∈ ℂ
63 ioossre 13328 . . . . . . . . 9 (0(,)1) ⊆ ℝ
6463, 59sselid 3935 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
6564recnd 11162 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
66 nncan 11411 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
6762, 65, 66sylancr 587 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
6867oveq1d 7368 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
6968oveq1d 7368 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
70 ioossicc 13354 . . . . . . 7 (0(,)1) ⊆ (0[,]1)
7170, 59sselid 3935 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
72 iirev 24839 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
7371, 72syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
74 lincmb01cmp 13416 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7573, 74syldan 591 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7669, 75eqeltrrd 2829 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
7776fvresd 6846 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
781rexrd 11184 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
792rexrd 11184 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
801, 2, 3ltled 11282 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
81 lbicc2 13385 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8278, 79, 80, 81syl3anc 1373 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
8382fvresd 6846 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐴) = (exp‘𝐴))
8483oveq2d 7369 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) = (𝑇 · (exp‘𝐴)))
85 ubicc2 13386 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
8678, 79, 80, 85syl3anc 1373 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
8786fvresd 6846 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((exp ↾ (𝐴[,]𝐵))‘𝐵) = (exp‘𝐵))
8887oveq2d 7369 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵)) = ((1 − 𝑇) · (exp‘𝐵)))
8984, 88oveq12d 7371 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((exp ↾ (𝐴[,]𝐵))‘𝐴)) + ((1 − 𝑇) · ((exp ↾ (𝐴[,]𝐵))‘𝐵))) = ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
9061, 77, 893brtr3d 5126 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  {cpr 4581   class class class wbr 5095  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  wf 6482  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  cmin 11365  +crp 12911  (,)cioo 13266  [,]cicc 13269  expce 15986  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  intcnt 22920  cnccncf 24785   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator