Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fssresd | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fssresd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssresd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
fssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssresd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fssresd.2 | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | fssres 6624 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Copyright terms: Public domain | W3C validator |