Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6422 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6539 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 5905 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5838 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 3925 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 686 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 612 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 648 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6422 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3883 ran crn 5581 ↾ cres 5582 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fssresd 6625 fssres2 6626 fresin 6627 fresaun 6629 f1ssres 6662 f2ndf 7932 elmapssres 8613 pmresg 8616 ralxpmap 8642 mapunen 8882 fofinf1o 9024 fseqenlem1 9711 inar1 10462 gruima 10489 addnqf 10635 mulnqf 10636 fseq1p1m1 13259 injresinj 13436 seqf1olem2 13691 wrdred1 14191 rlimres 15195 lo1res 15196 vdwnnlem1 16624 fsets 16798 resmhm 18374 resghm 18765 gsumzres 19425 gsumzadd 19438 gsum2dlem2 19487 dpjidcl 19576 ablfac1eu 19591 abvres 20014 znf1o 20671 islindf4 20955 kgencn 22615 ptrescn 22698 hmeores 22830 tsmsres 23203 tsmsmhm 23205 tsmsadd 23206 xrge0gsumle 23902 xrge0tsms 23903 ovolicc2lem4 24589 limcdif 24945 limcflf 24950 limcmo 24951 dvres 24980 dvres3a 24983 aannenlem1 25393 logcn 25707 dvlog 25711 dvlog2 25713 logtayl 25720 dvatan 25990 atancn 25991 efrlim 26024 amgm 26045 dchrelbas2 26290 redwlklem 27941 pthdivtx 27998 hhssabloilem 29524 hhssnv 29527 wrdres 31113 gsumpart 31217 xrge0tsmsd 31219 cntmeas 32094 eulerpartlemt 32238 eulerpartlemmf 32242 eulerpartlemgvv 32243 subiwrd 32252 sseqp1 32262 poimirlem4 35708 mbfresfi 35750 mbfposadd 35751 itg2gt0cn 35759 sdclem2 35827 mzpcompact2lem 40489 eldiophb 40495 eldioph2 40500 cncfiooicclem1 43324 fouriersw 43662 sge0tsms 43808 psmeasure 43899 sssmf 44161 resmgmhm 45240 lindslinindimp2lem2 45688 |
Copyright terms: Public domain | W3C validator |