| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6518 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6644 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5975 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5907 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3958 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6518 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 ran crn 5642 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fssresd 6730 fssres2 6731 fresin 6732 fresaun 6734 f1ssres 6766 resf1extb 7913 resf1ext2b 7914 f2ndf 8102 elmapssres 8843 pmresg 8846 ralxpmap 8872 mapunen 9116 fofinf1o 9290 fseqenlem1 9984 inar1 10735 gruima 10762 addnqf 10908 mulnqf 10909 fseq1p1m1 13566 injresinj 13756 seqf1olem2 14014 wrdred1 14532 rlimres 15531 lo1res 15532 vdwnnlem1 16973 fsets 17146 resmgmhm 18645 resmhm 18754 resghm 19171 gsumzres 19846 gsumzadd 19859 gsum2dlem2 19908 dpjidcl 19997 ablfac1eu 20012 abvres 20747 znf1o 21468 islindf4 21754 kgencn 23450 ptrescn 23533 hmeores 23665 tsmsres 24038 tsmsmhm 24040 tsmsadd 24041 xrge0gsumle 24729 xrge0tsms 24730 ovolicc2lem4 25428 limcdif 25784 limcflf 25789 limcmo 25790 dvres 25819 dvres3a 25822 aannenlem1 26243 logcn 26563 dvlog 26567 dvlog2 26569 logtayl 26576 dvatan 26852 atancn 26853 efrlim 26886 efrlimOLD 26887 amgm 26908 dchrelbas2 27155 redwlklem 29606 pthdivtx 29664 hhssabloilem 31197 hhssnv 31200 wrdres 32863 gsumpart 33004 xrge0tsmsd 33009 cntmeas 34223 eulerpartlemt 34369 eulerpartlemmf 34373 eulerpartlemgvv 34374 subiwrd 34383 sseqp1 34393 poimirlem4 37625 mbfresfi 37667 mbfposadd 37668 itg2gt0cn 37676 sdclem2 37743 mzpcompact2lem 42746 eldiophb 42752 eldioph2 42757 cncfiooicclem1 45898 fouriersw 46236 sge0tsms 46385 psmeasure 46476 sssmf 46743 lindslinindimp2lem2 48452 |
| Copyright terms: Public domain | W3C validator |