| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6515 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6641 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5972 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5904 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3955 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6515 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fssresd 6727 fssres2 6728 fresin 6729 fresaun 6731 f1ssres 6763 resf1extb 7910 resf1ext2b 7911 f2ndf 8099 elmapssres 8840 pmresg 8843 ralxpmap 8869 mapunen 9110 fofinf1o 9283 fseqenlem1 9977 inar1 10728 gruima 10755 addnqf 10901 mulnqf 10902 fseq1p1m1 13559 injresinj 13749 seqf1olem2 14007 wrdred1 14525 rlimres 15524 lo1res 15525 vdwnnlem1 16966 fsets 17139 resmgmhm 18638 resmhm 18747 resghm 19164 gsumzres 19839 gsumzadd 19852 gsum2dlem2 19901 dpjidcl 19990 ablfac1eu 20005 abvres 20740 znf1o 21461 islindf4 21747 kgencn 23443 ptrescn 23526 hmeores 23658 tsmsres 24031 tsmsmhm 24033 tsmsadd 24034 xrge0gsumle 24722 xrge0tsms 24723 ovolicc2lem4 25421 limcdif 25777 limcflf 25782 limcmo 25783 dvres 25812 dvres3a 25815 aannenlem1 26236 logcn 26556 dvlog 26560 dvlog2 26562 logtayl 26569 dvatan 26845 atancn 26846 efrlim 26879 efrlimOLD 26880 amgm 26901 dchrelbas2 27148 redwlklem 29599 pthdivtx 29657 hhssabloilem 31190 hhssnv 31193 wrdres 32856 gsumpart 32997 xrge0tsmsd 33002 cntmeas 34216 eulerpartlemt 34362 eulerpartlemmf 34366 eulerpartlemgvv 34367 subiwrd 34376 sseqp1 34386 poimirlem4 37618 mbfresfi 37660 mbfposadd 37661 itg2gt0cn 37669 sdclem2 37736 mzpcompact2lem 42739 eldiophb 42745 eldioph2 42750 cncfiooicclem1 45891 fouriersw 46229 sge0tsms 46378 psmeasure 46469 sssmf 46736 lindslinindimp2lem2 48448 |
| Copyright terms: Public domain | W3C validator |