| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6485 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6604 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5950 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5880 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3943 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6485 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 ran crn 5617 ↾ cres 5618 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fssresd 6690 fssres2 6691 fresin 6692 fresaun 6694 f1ssres 6726 resf1extb 7864 resf1ext2b 7865 f2ndf 8050 elmapssres 8791 pmresg 8794 ralxpmap 8820 mapunen 9059 fofinf1o 9216 fseqenlem1 9915 inar1 10666 gruima 10693 addnqf 10839 mulnqf 10840 fseq1p1m1 13498 injresinj 13691 seqf1olem2 13949 wrdred1 14467 rlimres 15465 lo1res 15466 vdwnnlem1 16907 fsets 17080 resmgmhm 18619 resmhm 18728 resghm 19145 gsumzres 19822 gsumzadd 19835 gsum2dlem2 19884 dpjidcl 19973 ablfac1eu 19988 abvres 20747 znf1o 21489 islindf4 21776 kgencn 23472 ptrescn 23555 hmeores 23687 tsmsres 24060 tsmsmhm 24062 tsmsadd 24063 xrge0gsumle 24750 xrge0tsms 24751 ovolicc2lem4 25449 limcdif 25805 limcflf 25810 limcmo 25811 dvres 25840 dvres3a 25843 aannenlem1 26264 logcn 26584 dvlog 26588 dvlog2 26590 logtayl 26597 dvatan 26873 atancn 26874 efrlim 26907 efrlimOLD 26908 amgm 26929 dchrelbas2 27176 redwlklem 29649 pthdivtx 29706 hhssabloilem 31239 hhssnv 31242 wrdres 32914 gsumpart 33035 xrge0tsmsd 33040 cntmeas 34237 eulerpartlemt 34382 eulerpartlemmf 34386 eulerpartlemgvv 34387 subiwrd 34396 sseqp1 34406 poimirlem4 37670 mbfresfi 37712 mbfposadd 37713 itg2gt0cn 37721 sdclem2 37788 mzpcompact2lem 42790 eldiophb 42796 eldioph2 42801 cncfiooicclem1 45937 fouriersw 46275 sge0tsms 46424 psmeasure 46515 sssmf 46782 lindslinindimp2lem2 48497 |
| Copyright terms: Public domain | W3C validator |