| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6490 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6609 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5956 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5886 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3946 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6490 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 ran crn 5624 ↾ cres 5625 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fssresd 6695 fssres2 6696 fresin 6697 fresaun 6699 f1ssres 6731 resf1extb 7874 resf1ext2b 7875 f2ndf 8060 elmapssres 8801 pmresg 8804 ralxpmap 8830 mapunen 9070 fofinf1o 9241 fseqenlem1 9937 inar1 10688 gruima 10715 addnqf 10861 mulnqf 10862 fseq1p1m1 13519 injresinj 13709 seqf1olem2 13967 wrdred1 14485 rlimres 15483 lo1res 15484 vdwnnlem1 16925 fsets 17098 resmgmhm 18603 resmhm 18712 resghm 19129 gsumzres 19806 gsumzadd 19819 gsum2dlem2 19868 dpjidcl 19957 ablfac1eu 19972 abvres 20734 znf1o 21476 islindf4 21763 kgencn 23459 ptrescn 23542 hmeores 23674 tsmsres 24047 tsmsmhm 24049 tsmsadd 24050 xrge0gsumle 24738 xrge0tsms 24739 ovolicc2lem4 25437 limcdif 25793 limcflf 25798 limcmo 25799 dvres 25828 dvres3a 25831 aannenlem1 26252 logcn 26572 dvlog 26576 dvlog2 26578 logtayl 26585 dvatan 26861 atancn 26862 efrlim 26895 efrlimOLD 26896 amgm 26917 dchrelbas2 27164 redwlklem 29633 pthdivtx 29690 hhssabloilem 31223 hhssnv 31226 wrdres 32889 gsumpart 33023 xrge0tsmsd 33028 cntmeas 34195 eulerpartlemt 34341 eulerpartlemmf 34345 eulerpartlemgvv 34346 subiwrd 34355 sseqp1 34365 poimirlem4 37606 mbfresfi 37648 mbfposadd 37649 itg2gt0cn 37657 sdclem2 37724 mzpcompact2lem 42727 eldiophb 42733 eldioph2 42738 cncfiooicclem1 45878 fouriersw 46216 sge0tsms 46365 psmeasure 46456 sssmf 46723 lindslinindimp2lem2 48448 |
| Copyright terms: Public domain | W3C validator |