![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6577 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6703 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 6031 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5965 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 4017 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 689 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 612 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 651 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6577 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 ran crn 5701 ↾ cres 5702 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fssresd 6788 fssres2 6789 fresin 6790 fresaun 6792 f1ssres 6824 f2ndf 8161 elmapssres 8925 pmresg 8928 ralxpmap 8954 mapunen 9212 fofinf1o 9400 fseqenlem1 10093 inar1 10844 gruima 10871 addnqf 11017 mulnqf 11018 fseq1p1m1 13658 injresinj 13838 seqf1olem2 14093 wrdred1 14608 rlimres 15604 lo1res 15605 vdwnnlem1 17042 fsets 17216 resmgmhm 18749 resmhm 18855 resghm 19272 gsumzres 19951 gsumzadd 19964 gsum2dlem2 20013 dpjidcl 20102 ablfac1eu 20117 abvres 20854 znf1o 21593 islindf4 21881 kgencn 23585 ptrescn 23668 hmeores 23800 tsmsres 24173 tsmsmhm 24175 tsmsadd 24176 xrge0gsumle 24874 xrge0tsms 24875 ovolicc2lem4 25574 limcdif 25931 limcflf 25936 limcmo 25937 dvres 25966 dvres3a 25969 aannenlem1 26388 logcn 26707 dvlog 26711 dvlog2 26713 logtayl 26720 dvatan 26996 atancn 26997 efrlim 27030 efrlimOLD 27031 amgm 27052 dchrelbas2 27299 redwlklem 29707 pthdivtx 29765 hhssabloilem 31293 hhssnv 31296 wrdres 32901 gsumpart 33038 xrge0tsmsd 33041 cntmeas 34190 eulerpartlemt 34336 eulerpartlemmf 34340 eulerpartlemgvv 34341 subiwrd 34350 sseqp1 34360 poimirlem4 37584 mbfresfi 37626 mbfposadd 37627 itg2gt0cn 37635 sdclem2 37702 mzpcompact2lem 42707 eldiophb 42713 eldioph2 42718 cncfiooicclem1 45814 fouriersw 46152 sge0tsms 46301 psmeasure 46392 sssmf 46659 lindslinindimp2lem2 48188 |
Copyright terms: Public domain | W3C validator |