![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6566 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6691 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 6021 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5953 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 4003 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6566 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3962 ran crn 5689 ↾ cres 5690 Fn wfn 6557 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: fssresd 6775 fssres2 6776 fresin 6777 fresaun 6779 f1ssres 6811 f2ndf 8143 elmapssres 8905 pmresg 8908 ralxpmap 8934 mapunen 9184 fofinf1o 9369 fseqenlem1 10061 inar1 10812 gruima 10839 addnqf 10985 mulnqf 10986 fseq1p1m1 13634 injresinj 13823 seqf1olem2 14079 wrdred1 14594 rlimres 15590 lo1res 15591 vdwnnlem1 17028 fsets 17202 resmgmhm 18736 resmhm 18845 resghm 19262 gsumzres 19941 gsumzadd 19954 gsum2dlem2 20003 dpjidcl 20092 ablfac1eu 20107 abvres 20848 znf1o 21587 islindf4 21875 kgencn 23579 ptrescn 23662 hmeores 23794 tsmsres 24167 tsmsmhm 24169 tsmsadd 24170 xrge0gsumle 24868 xrge0tsms 24869 ovolicc2lem4 25568 limcdif 25925 limcflf 25930 limcmo 25931 dvres 25960 dvres3a 25963 aannenlem1 26384 logcn 26703 dvlog 26707 dvlog2 26709 logtayl 26716 dvatan 26992 atancn 26993 efrlim 27026 efrlimOLD 27027 amgm 27048 dchrelbas2 27295 redwlklem 29703 pthdivtx 29761 hhssabloilem 31289 hhssnv 31292 wrdres 32903 gsumpart 33042 xrge0tsmsd 33047 cntmeas 34206 eulerpartlemt 34352 eulerpartlemmf 34356 eulerpartlemgvv 34357 subiwrd 34366 sseqp1 34376 poimirlem4 37610 mbfresfi 37652 mbfposadd 37653 itg2gt0cn 37661 sdclem2 37728 mzpcompact2lem 42738 eldiophb 42744 eldioph2 42749 cncfiooicclem1 45848 fouriersw 46186 sge0tsms 46335 psmeasure 46426 sssmf 46693 lindslinindimp2lem2 48304 |
Copyright terms: Public domain | W3C validator |