![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6546 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6672 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 6005 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5938 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 3989 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 686 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 611 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 648 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 579 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6546 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ⊆ wss 3947 ran crn 5676 ↾ cres 5677 Fn wfn 6537 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: fssresd 6757 fssres2 6758 fresin 6759 fresaun 6761 f1ssres 6794 f2ndf 8108 elmapssres 8863 pmresg 8866 ralxpmap 8892 mapunen 9148 fofinf1o 9329 fseqenlem1 10021 inar1 10772 gruima 10799 addnqf 10945 mulnqf 10946 fseq1p1m1 13579 injresinj 13757 seqf1olem2 14012 wrdred1 14514 rlimres 15506 lo1res 15507 vdwnnlem1 16932 fsets 17106 resmgmhm 18636 resmhm 18737 resghm 19146 gsumzres 19818 gsumzadd 19831 gsum2dlem2 19880 dpjidcl 19969 ablfac1eu 19984 abvres 20590 znf1o 21326 islindf4 21612 kgencn 23280 ptrescn 23363 hmeores 23495 tsmsres 23868 tsmsmhm 23870 tsmsadd 23871 xrge0gsumle 24569 xrge0tsms 24570 ovolicc2lem4 25269 limcdif 25625 limcflf 25630 limcmo 25631 dvres 25660 dvres3a 25663 aannenlem1 26077 logcn 26391 dvlog 26395 dvlog2 26397 logtayl 26404 dvatan 26676 atancn 26677 efrlim 26710 amgm 26731 dchrelbas2 26976 redwlklem 29195 pthdivtx 29253 hhssabloilem 30781 hhssnv 30784 wrdres 32370 gsumpart 32477 xrge0tsmsd 32479 cntmeas 33522 eulerpartlemt 33668 eulerpartlemmf 33672 eulerpartlemgvv 33673 subiwrd 33682 sseqp1 33692 poimirlem4 36795 mbfresfi 36837 mbfposadd 36838 itg2gt0cn 36846 sdclem2 36913 mzpcompact2lem 41791 eldiophb 41797 eldioph2 41802 cncfiooicclem1 44907 fouriersw 45245 sge0tsms 45394 psmeasure 45485 sssmf 45752 lindslinindimp2lem2 47227 |
Copyright terms: Public domain | W3C validator |