| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6490 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6609 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5954 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5884 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3939 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6490 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 ran crn 5620 ↾ cres 5621 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fssresd 6695 fssres2 6696 fresin 6697 fresaun 6699 f1ssres 6731 resf1extb 7870 resf1ext2b 7871 f2ndf 8056 elmapssres 8797 pmresg 8800 ralxpmap 8826 mapunen 9066 fofinf1o 9223 fseqenlem1 9922 inar1 10673 gruima 10700 addnqf 10846 mulnqf 10847 fseq1p1m1 13500 injresinj 13693 seqf1olem2 13951 wrdred1 14469 rlimres 15467 lo1res 15468 vdwnnlem1 16909 fsets 17082 resmgmhm 18621 resmhm 18730 resghm 19146 gsumzres 19823 gsumzadd 19836 gsum2dlem2 19885 dpjidcl 19974 ablfac1eu 19989 abvres 20748 znf1o 21490 islindf4 21777 kgencn 23472 ptrescn 23555 hmeores 23687 tsmsres 24060 tsmsmhm 24062 tsmsadd 24063 xrge0gsumle 24750 xrge0tsms 24751 ovolicc2lem4 25449 limcdif 25805 limcflf 25810 limcmo 25811 dvres 25840 dvres3a 25843 aannenlem1 26264 logcn 26584 dvlog 26588 dvlog2 26590 logtayl 26597 dvatan 26873 atancn 26874 efrlim 26907 efrlimOLD 26908 amgm 26929 dchrelbas2 27176 redwlklem 29650 pthdivtx 29707 hhssabloilem 31243 hhssnv 31246 wrdres 32923 gsumpart 33044 xrge0tsmsd 33049 cntmeas 34260 eulerpartlemt 34405 eulerpartlemmf 34409 eulerpartlemgvv 34410 subiwrd 34419 sseqp1 34429 poimirlem4 37685 mbfresfi 37727 mbfposadd 37728 itg2gt0cn 37736 sdclem2 37803 mzpcompact2lem 42869 eldiophb 42875 eldioph2 42880 cncfiooicclem1 46016 fouriersw 46354 sge0tsms 46503 psmeasure 46594 sssmf 46861 lindslinindimp2lem2 48585 |
| Copyright terms: Public domain | W3C validator |