Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6437 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6555 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 5916 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5849 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 3929 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 687 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 649 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6437 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3887 ran crn 5590 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fssresd 6641 fssres2 6642 fresin 6643 fresaun 6645 f1ssres 6678 f2ndf 7961 elmapssres 8655 pmresg 8658 ralxpmap 8684 mapunen 8933 fofinf1o 9094 fseqenlem1 9780 inar1 10531 gruima 10558 addnqf 10704 mulnqf 10705 fseq1p1m1 13330 injresinj 13508 seqf1olem2 13763 wrdred1 14263 rlimres 15267 lo1res 15268 vdwnnlem1 16696 fsets 16870 resmhm 18459 resghm 18850 gsumzres 19510 gsumzadd 19523 gsum2dlem2 19572 dpjidcl 19661 ablfac1eu 19676 abvres 20099 znf1o 20759 islindf4 21045 kgencn 22707 ptrescn 22790 hmeores 22922 tsmsres 23295 tsmsmhm 23297 tsmsadd 23298 xrge0gsumle 23996 xrge0tsms 23997 ovolicc2lem4 24684 limcdif 25040 limcflf 25045 limcmo 25046 dvres 25075 dvres3a 25078 aannenlem1 25488 logcn 25802 dvlog 25806 dvlog2 25808 logtayl 25815 dvatan 26085 atancn 26086 efrlim 26119 amgm 26140 dchrelbas2 26385 redwlklem 28039 pthdivtx 28097 hhssabloilem 29623 hhssnv 29626 wrdres 31211 gsumpart 31315 xrge0tsmsd 31317 cntmeas 32194 eulerpartlemt 32338 eulerpartlemmf 32342 eulerpartlemgvv 32343 subiwrd 32352 sseqp1 32362 poimirlem4 35781 mbfresfi 35823 mbfposadd 35824 itg2gt0cn 35832 sdclem2 35900 mzpcompact2lem 40573 eldiophb 40579 eldioph2 40584 cncfiooicclem1 43434 fouriersw 43772 sge0tsms 43918 psmeasure 44009 sssmf 44274 resmgmhm 45352 lindslinindimp2lem2 45800 |
Copyright terms: Public domain | W3C validator |