| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6534 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 6660 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5988 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | 3 | rnssi 5920 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 5 | sstr 3967 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | df-f 6534 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 ran crn 5655 ↾ cres 5656 Fn wfn 6525 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fssresd 6744 fssres2 6745 fresin 6746 fresaun 6748 f1ssres 6780 resf1extb 7928 resf1ext2b 7929 f2ndf 8117 elmapssres 8879 pmresg 8882 ralxpmap 8908 mapunen 9158 fofinf1o 9342 fseqenlem1 10036 inar1 10787 gruima 10814 addnqf 10960 mulnqf 10961 fseq1p1m1 13613 injresinj 13802 seqf1olem2 14058 wrdred1 14576 rlimres 15572 lo1res 15573 vdwnnlem1 17013 fsets 17186 resmgmhm 18687 resmhm 18796 resghm 19213 gsumzres 19888 gsumzadd 19901 gsum2dlem2 19950 dpjidcl 20039 ablfac1eu 20054 abvres 20789 znf1o 21510 islindf4 21796 kgencn 23492 ptrescn 23575 hmeores 23707 tsmsres 24080 tsmsmhm 24082 tsmsadd 24083 xrge0gsumle 24771 xrge0tsms 24772 ovolicc2lem4 25471 limcdif 25827 limcflf 25832 limcmo 25833 dvres 25862 dvres3a 25865 aannenlem1 26286 logcn 26606 dvlog 26610 dvlog2 26612 logtayl 26619 dvatan 26895 atancn 26896 efrlim 26929 efrlimOLD 26930 amgm 26951 dchrelbas2 27198 redwlklem 29597 pthdivtx 29655 hhssabloilem 31188 hhssnv 31191 wrdres 32856 gsumpart 32997 xrge0tsmsd 33002 cntmeas 34203 eulerpartlemt 34349 eulerpartlemmf 34353 eulerpartlemgvv 34354 subiwrd 34363 sseqp1 34373 poimirlem4 37594 mbfresfi 37636 mbfposadd 37637 itg2gt0cn 37645 sdclem2 37712 mzpcompact2lem 42721 eldiophb 42727 eldioph2 42732 cncfiooicclem1 45870 fouriersw 46208 sge0tsms 46357 psmeasure 46448 sssmf 46715 lindslinindimp2lem2 48383 |
| Copyright terms: Public domain | W3C validator |