![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6544 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6670 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 6004 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5937 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 3989 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 688 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 613 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 650 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6544 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3947 ran crn 5676 ↾ cres 5677 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: fssresd 6755 fssres2 6756 fresin 6757 fresaun 6759 f1ssres 6792 f2ndf 8102 elmapssres 8857 pmresg 8860 ralxpmap 8886 mapunen 9142 fofinf1o 9323 fseqenlem1 10015 inar1 10766 gruima 10793 addnqf 10939 mulnqf 10940 fseq1p1m1 13571 injresinj 13749 seqf1olem2 14004 wrdred1 14506 rlimres 15498 lo1res 15499 vdwnnlem1 16924 fsets 17098 resmhm 18697 resghm 19102 gsumzres 19771 gsumzadd 19784 gsum2dlem2 19833 dpjidcl 19922 ablfac1eu 19937 abvres 20439 znf1o 21098 islindf4 21384 kgencn 23051 ptrescn 23134 hmeores 23266 tsmsres 23639 tsmsmhm 23641 tsmsadd 23642 xrge0gsumle 24340 xrge0tsms 24341 ovolicc2lem4 25028 limcdif 25384 limcflf 25389 limcmo 25390 dvres 25419 dvres3a 25422 aannenlem1 25832 logcn 26146 dvlog 26150 dvlog2 26152 logtayl 26159 dvatan 26429 atancn 26430 efrlim 26463 amgm 26484 dchrelbas2 26729 redwlklem 28917 pthdivtx 28975 hhssabloilem 30501 hhssnv 30504 wrdres 32090 gsumpart 32194 xrge0tsmsd 32196 cntmeas 33212 eulerpartlemt 33358 eulerpartlemmf 33362 eulerpartlemgvv 33363 subiwrd 33372 sseqp1 33382 poimirlem4 36480 mbfresfi 36522 mbfposadd 36523 itg2gt0cn 36531 sdclem2 36598 mzpcompact2lem 41474 eldiophb 41480 eldioph2 41485 cncfiooicclem1 44595 fouriersw 44933 sge0tsms 45082 psmeasure 45173 sssmf 45440 resmgmhm 46554 lindslinindimp2lem2 47093 |
Copyright terms: Public domain | W3C validator |