![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6141 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6252 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 5673 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | 3 | rnssi 5602 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
5 | sstr 3829 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
6 | 4, 5 | mpan 680 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
7 | 2, 6 | anim12i 606 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
8 | 7 | an32s 642 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 1, 8 | sylanb 576 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | df-f 6141 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
11 | 9, 10 | sylibr 226 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ⊆ wss 3792 ran crn 5358 ↾ cres 5359 Fn wfn 6132 ⟶wf 6133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-fun 6139 df-fn 6140 df-f 6141 |
This theorem is referenced by: fssresd 6323 fssres2 6324 fresin 6325 fresaun 6327 f1ssres 6360 f2ndf 7566 elmapssres 8167 pmresg 8170 ralxpmap 8195 mapunen 8419 fofinf1o 8531 fseqenlem1 9182 inar1 9934 gruima 9961 addnqf 10107 mulnqf 10108 fseq1p1m1 12737 injresinj 12913 seqf1olem2 13164 wrdred1 13656 rlimres 14706 lo1res 14707 vdwnnlem1 16114 fsets 16299 resmhm 17756 resghm 18071 gsumzres 18707 gsumzadd 18719 gsum2dlem2 18767 dpjidcl 18855 ablfac1eu 18870 abvres 19242 znf1o 20306 islindf4 20592 kgencn 21779 ptrescn 21862 hmeores 21994 tsmsres 22366 tsmsmhm 22368 tsmsadd 22369 xrge0gsumle 23055 xrge0tsms 23056 ovolicc2lem4 23735 limcdif 24088 limcflf 24093 limcmo 24094 dvres 24123 dvres3a 24126 aannenlem1 24531 logcn 24841 dvlog 24845 dvlog2 24847 logtayl 24854 dvatan 25124 atancn 25125 efrlim 25159 amgm 25180 dchrelbas2 25425 redwlklem 27039 pthdivtx 27098 hhssabloilem 28707 hhssnv 28710 xrge0tsmsd 30355 cntmeas 30895 eulerpartlemt 31039 eulerpartlemmf 31043 eulerpartlemgvv 31044 subiwrd 31053 sseqp1 31064 wrdres 31224 poimirlem4 34048 mbfresfi 34090 mbfposadd 34091 itg2gt0cn 34099 sdclem2 34171 mzpcompact2lem 38288 eldiophb 38294 eldioph2 38299 cncfiooicclem1 41048 fouriersw 41389 sge0tsms 41535 psmeasure 41626 sssmf 41888 resmgmhm 42827 lindslinindimp2lem2 43277 |
Copyright terms: Public domain | W3C validator |