MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppfund Structured version   Visualization version   GIF version

Theorem fsuppfund 9376
Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025.)
Hypothesis
Ref Expression
fsuppfund.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppfund (𝜑 → Fun 𝐹)

Proof of Theorem fsuppfund
StepHypRef Expression
1 fsuppfund.1 . 2 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 9374 . . 3 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
32simpld 494 . 2 (𝐹 finSupp 𝑍 → Fun 𝐹)
41, 3syl 17 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5116  Fun wfun 6521  (class class class)co 7399   supp csupp 8153  Fincfn 8953   finSupp cfsupp 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-iota 6480  df-fun 6529  df-fv 6535  df-ov 7402  df-fsupp 9368
This theorem is referenced by:  fsuppss  9389
  Copyright terms: Public domain W3C validator