![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fisuppfi | Structured version Visualization version GIF version |
Description: A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
fisuppfi.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fisuppfi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fisuppfi | ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fisuppfi.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | cnvimass 5706 | . . 3 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
3 | fisuppfi.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | 2, 3 | fssdm 6276 | . 2 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ⊆ 𝐴) |
5 | ssfi 8426 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (◡𝐹 “ 𝐶) ⊆ 𝐴) → (◡𝐹 “ 𝐶) ∈ Fin) | |
6 | 1, 4, 5 | syl2anc 580 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ⊆ wss 3773 ◡ccnv 5315 “ cima 5319 ⟶wf 6101 Fincfn 8199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-om 7304 df-er 7986 df-en 8200 df-fin 8203 |
This theorem is referenced by: fdmfisuppfi 8530 fsumss 14801 fprodss 15019 fidmfisupp 40147 |
Copyright terms: Public domain | W3C validator |