Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fisuppfi | Structured version Visualization version GIF version |
Description: A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
fisuppfi.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fisuppfi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fisuppfi | ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fisuppfi.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | cnvimass 6013 | . . 3 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
3 | fisuppfi.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | 2, 3 | fssdm 6665 | . 2 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ⊆ 𝐴) |
5 | 1, 4 | ssfid 9124 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ◡ccnv 5613 “ cima 5617 ⟶wf 6469 Fincfn 8796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-om 7773 df-1o 8359 df-en 8797 df-fin 8800 |
This theorem is referenced by: fdmfisuppfi 9227 fsumss 15528 fprodss 15749 fply1 31905 fidmfisupp 43055 |
Copyright terms: Public domain | W3C validator |