| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9277 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 Fun wfun 6480 (class class class)co 7353 supp csupp 8100 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-fsupp 9271 |
| This theorem is referenced by: fsuppsssupp 9290 fsuppsssuppgd 9291 fsuppxpfi 9294 fsuppun 9296 resfsupp 9305 fsuppmptif 9308 fsuppco 9311 fsuppco2 9312 fsuppcor 9313 cantnfcl 9582 cantnfp1lem1 9593 fsuppmapnn0fiublem 13915 fsuppmapnn0fiub 13916 fsuppmapnn0ub 13920 mndpfsupp 18659 gsumzcl 19808 gsumcl 19812 gsumzadd 19819 gsumzmhm 19834 gsumzoppg 19841 gsum2dlem1 19867 gsum2dlem2 19868 gsum2d 19869 gsumxp2 19877 gsumdixp 20222 lcomfsupp 20823 mptscmfsupp0 20848 regsumsupp 21547 frlmphllem 21705 uvcresum 21718 frlmsslsp 21721 frlmup1 21723 mplcoe1 21960 mplbas2 21965 psrbagev1 22000 evlslem2 22002 evlslem6 22004 psdmplcl 22065 evls1fpws 22272 tsmsgsum 24042 rrxcph 25308 rrxfsupp 25318 mdegldg 25987 mdegcl 25990 plypf1 26133 fsuppinisegfi 32643 fsupprnfi 32648 fsuppcurry1 32681 fsuppcurry2 32682 offinsupp1 32683 gsumfs2d 33021 gsumhashmul 33027 rmfsupp2 33188 elrgspnlem2 33193 elrgspnlem4 33195 elrgspnsubrunlem1 33197 elrgspnsubrunlem2 33198 elrspunidl 33375 elrspunsn 33376 rprmdvdsprod 33481 fedgmullem1 33601 fedgmullem2 33602 evls1fldgencl 33641 fldextrspunlsplem 33644 fldextrspunlsp 33645 zarcmplem 33847 fsuppind 42563 mnringmulrcld 44201 rmfsupp 48358 scmfsupp 48360 lincresunit2 48464 |
| Copyright terms: Public domain | W3C validator |