Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version |
Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9064 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 Fun wfun 6412 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-fsupp 9059 |
This theorem is referenced by: fsuppsssupp 9074 fsuppxpfi 9075 fsuppun 9077 resfsupp 9085 fsuppmptif 9088 fsuppco 9091 fsuppco2 9092 fsuppcor 9093 cantnfcl 9355 cantnfp1lem1 9366 fsuppmapnn0fiublem 13638 fsuppmapnn0fiub 13639 fsuppmapnn0ub 13643 gsumzcl 19427 gsumcl 19431 gsumzadd 19438 gsumzmhm 19453 gsumzoppg 19460 gsum2dlem1 19486 gsum2dlem2 19487 gsum2d 19488 gsumxp2 19496 gsumdixp 19763 lcomfsupp 20078 mptscmfsupp0 20103 regsumsupp 20739 frlmphllem 20897 uvcresum 20910 frlmsslsp 20913 frlmup1 20915 mplcoe1 21148 mplbas2 21153 psrbagev1 21195 psrbagev1OLD 21196 evlslem2 21199 evlslem6 21201 tsmsgsum 23198 rrxcph 24461 rrxfsupp 24471 mdegldg 25136 mdegcl 25139 plypf1 25278 fsuppinisegfi 30923 fsupprnfi 30928 fsuppcurry1 30962 fsuppcurry2 30963 offinsupp1 30964 gsumhashmul 31218 rmfsupp2 31394 elrspunidl 31508 fedgmullem1 31612 fedgmullem2 31613 zarcmplem 31733 evlsbagval 40198 fsuppind 40202 mhphf 40208 mnringmulrcld 41735 rmfsupp 45598 mndpfsupp 45600 scmfsupp 45602 lincresunit2 45707 |
Copyright terms: Public domain | W3C validator |