| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9319 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 Fun wfun 6505 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-fsupp 9313 |
| This theorem is referenced by: fsuppsssupp 9332 fsuppsssuppgd 9333 fsuppxpfi 9336 fsuppun 9338 resfsupp 9347 fsuppmptif 9350 fsuppco 9353 fsuppco2 9354 fsuppcor 9355 cantnfcl 9620 cantnfp1lem1 9631 fsuppmapnn0fiublem 13955 fsuppmapnn0fiub 13956 fsuppmapnn0ub 13960 mndpfsupp 18694 gsumzcl 19841 gsumcl 19845 gsumzadd 19852 gsumzmhm 19867 gsumzoppg 19874 gsum2dlem1 19900 gsum2dlem2 19901 gsum2d 19902 gsumxp2 19910 gsumdixp 20228 lcomfsupp 20808 mptscmfsupp0 20833 regsumsupp 21531 frlmphllem 21689 uvcresum 21702 frlmsslsp 21705 frlmup1 21707 mplcoe1 21944 mplbas2 21949 psrbagev1 21984 evlslem2 21986 evlslem6 21988 psdmplcl 22049 evls1fpws 22256 tsmsgsum 24026 rrxcph 25292 rrxfsupp 25302 mdegldg 25971 mdegcl 25974 plypf1 26117 fsuppinisegfi 32610 fsupprnfi 32615 fsuppcurry1 32648 fsuppcurry2 32649 offinsupp1 32650 gsumfs2d 32995 gsumhashmul 33001 rmfsupp2 33189 elrgspnlem2 33194 elrgspnlem4 33196 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrspunidl 33399 elrspunsn 33400 rprmdvdsprod 33505 fedgmullem1 33625 fedgmullem2 33626 evls1fldgencl 33665 fldextrspunlsplem 33668 fldextrspunlsp 33669 zarcmplem 33871 fsuppind 42578 mnringmulrcld 44217 rmfsupp 48361 scmfsupp 48363 lincresunit2 48467 |
| Copyright terms: Public domain | W3C validator |