| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9259 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 Fun wfun 6480 (class class class)co 7352 supp csupp 8096 Fincfn 8875 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-fsupp 9253 |
| This theorem is referenced by: fsuppsssupp 9272 fsuppsssuppgd 9273 fsuppxpfi 9276 fsuppun 9278 resfsupp 9287 fsuppmptif 9290 fsuppco 9293 fsuppco2 9294 fsuppcor 9295 cantnfcl 9564 cantnfp1lem1 9575 fsuppmapnn0fiublem 13899 fsuppmapnn0fiub 13900 fsuppmapnn0ub 13904 mndpfsupp 18677 gsumzcl 19825 gsumcl 19829 gsumzadd 19836 gsumzmhm 19851 gsumzoppg 19858 gsum2dlem1 19884 gsum2dlem2 19885 gsum2d 19886 gsumxp2 19894 gsumdixp 20239 lcomfsupp 20837 mptscmfsupp0 20862 regsumsupp 21561 frlmphllem 21719 uvcresum 21732 frlmsslsp 21735 frlmup1 21737 mplcoe1 21973 mplbas2 21978 psrbagev1 22013 evlslem2 22015 evlslem6 22017 psdmplcl 22078 evls1fpws 22285 tsmsgsum 24055 rrxcph 25320 rrxfsupp 25330 mdegldg 25999 mdegcl 26002 plypf1 26145 fsuppinisegfi 32672 fsupprnfi 32677 fsuppcurry1 32711 fsuppcurry2 32712 offinsupp1 32713 gsumfs2d 33042 gsumhashmul 33048 rmfsupp2 33212 elrgspnlem2 33217 elrgspnlem4 33219 elrgspnsubrunlem1 33221 elrgspnsubrunlem2 33222 elrspunidl 33400 elrspunsn 33401 rprmdvdsprod 33506 extvfvcl 33587 esplyfval3 33612 esplyind 33613 fedgmullem1 33663 fedgmullem2 33664 evls1fldgencl 33704 fldextrspunlsplem 33707 fldextrspunlsp 33708 zarcmplem 33915 fsuppind 42708 mnringmulrcld 44345 rmfsupp 48497 scmfsupp 48499 lincresunit2 48603 |
| Copyright terms: Public domain | W3C validator |