| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9380 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 Fun wfun 6525 (class class class)co 7405 supp csupp 8159 Fincfn 8959 finSupp cfsupp 9373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-fsupp 9374 |
| This theorem is referenced by: fsuppsssupp 9393 fsuppsssuppgd 9394 fsuppxpfi 9397 fsuppun 9399 resfsupp 9408 fsuppmptif 9411 fsuppco 9414 fsuppco2 9415 fsuppcor 9416 cantnfcl 9681 cantnfp1lem1 9692 fsuppmapnn0fiublem 14008 fsuppmapnn0fiub 14009 fsuppmapnn0ub 14013 mndpfsupp 18745 gsumzcl 19892 gsumcl 19896 gsumzadd 19903 gsumzmhm 19918 gsumzoppg 19925 gsum2dlem1 19951 gsum2dlem2 19952 gsum2d 19953 gsumxp2 19961 gsumdixp 20279 lcomfsupp 20859 mptscmfsupp0 20884 regsumsupp 21582 frlmphllem 21740 uvcresum 21753 frlmsslsp 21756 frlmup1 21758 mplcoe1 21995 mplbas2 22000 psrbagev1 22035 evlslem2 22037 evlslem6 22039 psdmplcl 22100 evls1fpws 22307 tsmsgsum 24077 rrxcph 25344 rrxfsupp 25354 mdegldg 26023 mdegcl 26026 plypf1 26169 fsuppinisegfi 32664 fsupprnfi 32669 fsuppcurry1 32702 fsuppcurry2 32703 offinsupp1 32704 gsumfs2d 33049 gsumhashmul 33055 rmfsupp2 33233 elrgspnlem2 33238 elrgspnlem4 33240 elrgspnsubrunlem1 33242 elrgspnsubrunlem2 33243 elrspunidl 33443 elrspunsn 33444 rprmdvdsprod 33549 fedgmullem1 33669 fedgmullem2 33670 evls1fldgencl 33711 fldextrspunlsplem 33714 fldextrspunlsp 33715 zarcmplem 33912 fsuppind 42613 mnringmulrcld 44252 rmfsupp 48348 scmfsupp 48350 lincresunit2 48454 |
| Copyright terms: Public domain | W3C validator |