![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version |
Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9438 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-fsupp 9432 |
This theorem is referenced by: fsuppsssupp 9450 fsuppsssuppgd 9451 fsuppxpfi 9454 fsuppun 9456 resfsupp 9465 fsuppmptif 9468 fsuppco 9471 fsuppco2 9472 fsuppcor 9473 cantnfcl 9736 cantnfp1lem1 9747 fsuppmapnn0fiublem 14041 fsuppmapnn0fiub 14042 fsuppmapnn0ub 14046 gsumzcl 19953 gsumcl 19957 gsumzadd 19964 gsumzmhm 19979 gsumzoppg 19986 gsum2dlem1 20012 gsum2dlem2 20013 gsum2d 20014 gsumxp2 20022 gsumdixp 20342 lcomfsupp 20922 mptscmfsupp0 20947 regsumsupp 21663 frlmphllem 21823 uvcresum 21836 frlmsslsp 21839 frlmup1 21841 mplcoe1 22078 mplbas2 22083 psrbagev1 22124 evlslem2 22126 evlslem6 22128 psdmplcl 22189 evls1fpws 22394 tsmsgsum 24168 rrxcph 25445 rrxfsupp 25455 mdegldg 26125 mdegcl 26128 plypf1 26271 fsuppinisegfi 32699 fsupprnfi 32704 fsuppcurry1 32739 fsuppcurry2 32740 offinsupp1 32741 gsumhashmul 33040 rmfsupp2 33218 elrspunidl 33421 elrspunsn 33422 rprmdvdsprod 33527 fedgmullem1 33642 fedgmullem2 33643 evls1fldgencl 33680 zarcmplem 33827 fsuppind 42545 mnringmulrcld 44197 rmfsupp 48099 mndpfsupp 48101 scmfsupp 48103 lincresunit2 48207 |
Copyright terms: Public domain | W3C validator |