| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9252 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 Fun wfun 6475 (class class class)co 7346 supp csupp 8090 Fincfn 8869 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-fsupp 9246 |
| This theorem is referenced by: fsuppsssupp 9265 fsuppsssuppgd 9266 fsuppxpfi 9269 fsuppun 9271 resfsupp 9280 fsuppmptif 9283 fsuppco 9286 fsuppco2 9287 fsuppcor 9288 cantnfcl 9557 cantnfp1lem1 9568 fsuppmapnn0fiublem 13894 fsuppmapnn0fiub 13895 fsuppmapnn0ub 13899 mndpfsupp 18672 gsumzcl 19821 gsumcl 19825 gsumzadd 19832 gsumzmhm 19847 gsumzoppg 19854 gsum2dlem1 19880 gsum2dlem2 19881 gsum2d 19882 gsumxp2 19890 gsumdixp 20235 lcomfsupp 20833 mptscmfsupp0 20858 regsumsupp 21557 frlmphllem 21715 uvcresum 21728 frlmsslsp 21731 frlmup1 21733 mplcoe1 21970 mplbas2 21975 psrbagev1 22010 evlslem2 22012 evlslem6 22014 psdmplcl 22075 evls1fpws 22282 tsmsgsum 24052 rrxcph 25317 rrxfsupp 25327 mdegldg 25996 mdegcl 25999 plypf1 26142 fsuppinisegfi 32663 fsupprnfi 32668 fsuppcurry1 32702 fsuppcurry2 32703 offinsupp1 32704 gsumfs2d 33030 gsumhashmul 33036 rmfsupp2 33200 elrgspnlem2 33205 elrgspnlem4 33207 elrgspnsubrunlem1 33209 elrgspnsubrunlem2 33210 elrspunidl 33388 elrspunsn 33389 rprmdvdsprod 33494 fedgmullem1 33637 fedgmullem2 33638 evls1fldgencl 33678 fldextrspunlsplem 33681 fldextrspunlsp 33682 zarcmplem 33889 fsuppind 42622 mnringmulrcld 44260 rmfsupp 48403 scmfsupp 48405 lincresunit2 48509 |
| Copyright terms: Public domain | W3C validator |