| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version | ||
| Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 2 | fsuppimp 9326 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
| 3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 Fun wfun 6508 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-fsupp 9320 |
| This theorem is referenced by: fsuppsssupp 9339 fsuppsssuppgd 9340 fsuppxpfi 9343 fsuppun 9345 resfsupp 9354 fsuppmptif 9357 fsuppco 9360 fsuppco2 9361 fsuppcor 9362 cantnfcl 9627 cantnfp1lem1 9638 fsuppmapnn0fiublem 13962 fsuppmapnn0fiub 13963 fsuppmapnn0ub 13967 mndpfsupp 18701 gsumzcl 19848 gsumcl 19852 gsumzadd 19859 gsumzmhm 19874 gsumzoppg 19881 gsum2dlem1 19907 gsum2dlem2 19908 gsum2d 19909 gsumxp2 19917 gsumdixp 20235 lcomfsupp 20815 mptscmfsupp0 20840 regsumsupp 21538 frlmphllem 21696 uvcresum 21709 frlmsslsp 21712 frlmup1 21714 mplcoe1 21951 mplbas2 21956 psrbagev1 21991 evlslem2 21993 evlslem6 21995 psdmplcl 22056 evls1fpws 22263 tsmsgsum 24033 rrxcph 25299 rrxfsupp 25309 mdegldg 25978 mdegcl 25981 plypf1 26124 fsuppinisegfi 32617 fsupprnfi 32622 fsuppcurry1 32655 fsuppcurry2 32656 offinsupp1 32657 gsumfs2d 33002 gsumhashmul 33008 rmfsupp2 33196 elrgspnlem2 33201 elrgspnlem4 33203 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 elrspunidl 33406 elrspunsn 33407 rprmdvdsprod 33512 fedgmullem1 33632 fedgmullem2 33633 evls1fldgencl 33672 fldextrspunlsplem 33675 fldextrspunlsp 33676 zarcmplem 33878 fsuppind 42585 mnringmulrcld 44224 rmfsupp 48365 scmfsupp 48367 lincresunit2 48471 |
| Copyright terms: Public domain | W3C validator |