![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppimpd | Structured version Visualization version GIF version |
Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppimpd.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppimpd | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppimpd.f | . 2 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
2 | fsuppimp 9405 | . . 3 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
3 | 2 | simprd 495 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 Fun wfun 6556 (class class class)co 7430 supp csupp 8183 Fincfn 8983 finSupp cfsupp 9398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-fsupp 9399 |
This theorem is referenced by: fsuppsssupp 9418 fsuppsssuppgd 9419 fsuppxpfi 9422 fsuppun 9424 resfsupp 9433 fsuppmptif 9436 fsuppco 9439 fsuppco2 9440 fsuppcor 9441 cantnfcl 9704 cantnfp1lem1 9715 fsuppmapnn0fiublem 14027 fsuppmapnn0fiub 14028 fsuppmapnn0ub 14032 mndpfsupp 18792 gsumzcl 19943 gsumcl 19947 gsumzadd 19954 gsumzmhm 19969 gsumzoppg 19976 gsum2dlem1 20002 gsum2dlem2 20003 gsum2d 20004 gsumxp2 20012 gsumdixp 20332 lcomfsupp 20916 mptscmfsupp0 20941 regsumsupp 21657 frlmphllem 21817 uvcresum 21830 frlmsslsp 21833 frlmup1 21835 mplcoe1 22072 mplbas2 22077 psrbagev1 22118 evlslem2 22120 evlslem6 22122 psdmplcl 22183 evls1fpws 22388 tsmsgsum 24162 rrxcph 25439 rrxfsupp 25449 mdegldg 26119 mdegcl 26122 plypf1 26265 fsuppinisegfi 32701 fsupprnfi 32706 fsuppcurry1 32742 fsuppcurry2 32743 offinsupp1 32744 gsumfs2d 33040 gsumhashmul 33046 rmfsupp2 33227 elrgspnlem2 33232 elrgspnlem4 33234 elrspunidl 33435 elrspunsn 33436 rprmdvdsprod 33541 fedgmullem1 33656 fedgmullem2 33657 evls1fldgencl 33694 zarcmplem 33841 fsuppind 42576 mnringmulrcld 44223 rmfsupp 48217 scmfsupp 48219 lincresunit2 48323 |
Copyright terms: Public domain | W3C validator |