Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funresdm1 Structured version   Visualization version   GIF version

Theorem funresdm1 30944
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Assertion
Ref Expression
funresdm1 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴𝐵) ↾ dom 𝐴) = 𝐴)

Proof of Theorem funresdm1
StepHypRef Expression
1 resundir 5906 . 2 ((𝐴𝐵) ↾ dom 𝐴) = ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴))
2 resdm 5936 . . . . 5 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
32adantr 481 . . . 4 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐴 ↾ dom 𝐴) = 𝐴)
4 dmres 5913 . . . . . 6 dom (𝐵 ↾ dom 𝐴) = (dom 𝐴 ∩ dom 𝐵)
5 simpr 485 . . . . . 6 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (dom 𝐴 ∩ dom 𝐵) = ∅)
64, 5eqtrid 2790 . . . . 5 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → dom (𝐵 ↾ dom 𝐴) = ∅)
7 relres 5920 . . . . . 6 Rel (𝐵 ↾ dom 𝐴)
8 reldm0 5837 . . . . . 6 (Rel (𝐵 ↾ dom 𝐴) → ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅))
97, 8ax-mp 5 . . . . 5 ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅)
106, 9sylibr 233 . . . 4 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐵 ↾ dom 𝐴) = ∅)
113, 10uneq12d 4098 . . 3 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = (𝐴 ∪ ∅))
12 un0 4324 . . 3 (𝐴 ∪ ∅) = 𝐴
1311, 12eqtrdi 2794 . 2 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = 𝐴)
141, 13eqtrid 2790 1 ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴𝐵) ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  cun 3885  cin 3886  c0 4256  dom cdm 5589  cres 5591  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601
This theorem is referenced by:  fnunres1  30945
  Copyright terms: Public domain W3C validator