Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funresdm1 | Structured version Visualization version GIF version |
Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
Ref | Expression |
---|---|
funresdm1 | ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 5906 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) | |
2 | resdm 5936 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐴 ↾ dom 𝐴) = 𝐴) |
4 | dmres 5913 | . . . . . 6 ⊢ dom (𝐵 ↾ dom 𝐴) = (dom 𝐴 ∩ dom 𝐵) | |
5 | simpr 485 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (dom 𝐴 ∩ dom 𝐵) = ∅) | |
6 | 4, 5 | eqtrid 2790 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → dom (𝐵 ↾ dom 𝐴) = ∅) |
7 | relres 5920 | . . . . . 6 ⊢ Rel (𝐵 ↾ dom 𝐴) | |
8 | reldm0 5837 | . . . . . 6 ⊢ (Rel (𝐵 ↾ dom 𝐴) → ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ((𝐵 ↾ dom 𝐴) = ∅ ↔ dom (𝐵 ↾ dom 𝐴) = ∅) |
10 | 6, 9 | sylibr 233 | . . . 4 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → (𝐵 ↾ dom 𝐴) = ∅) |
11 | 3, 10 | uneq12d 4098 | . . 3 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = (𝐴 ∪ ∅)) |
12 | un0 4324 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
13 | 11, 12 | eqtrdi 2794 | . 2 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ↾ dom 𝐴) ∪ (𝐵 ↾ dom 𝐴)) = 𝐴) |
14 | 1, 13 | eqtrid 2790 | 1 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∩ dom 𝐵) = ∅) → ((𝐴 ∪ 𝐵) ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 |
This theorem is referenced by: fnunres1 30945 |
Copyright terms: Public domain | W3C validator |