![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funsseq | Structured version Visualization version GIF version |
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
funsseq | ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4040 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | simpl3 1190 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → dom 𝐹 = dom 𝐺) | |
3 | 2 | reseq2d 5989 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺)) |
4 | funssres 6602 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) | |
5 | 4 | 3ad2antl2 1183 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) |
6 | simpl2 1189 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → Fun 𝐺) | |
7 | funrel 6575 | . . . . 5 ⊢ (Fun 𝐺 → Rel 𝐺) | |
8 | resdm 6035 | . . . . 5 ⊢ (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) | |
9 | 6, 7, 8 | 3syl 18 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺) |
10 | 3, 5, 9 | 3eqtr3d 2776 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) |
11 | 10 | ex 411 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 ⊆ 𝐺 → 𝐹 = 𝐺)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ⊆ wss 3949 dom cdm 5682 ↾ cres 5684 Rel wrel 5687 Fun wfun 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-fun 6555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |