| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funsseq | Structured version Visualization version GIF version | ||
| Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| funsseq | ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4022 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
| 2 | simpl3 1194 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → dom 𝐹 = dom 𝐺) | |
| 3 | 2 | reseq2d 5971 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺)) |
| 4 | funssres 6585 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) | |
| 5 | 4 | 3ad2antl2 1187 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) |
| 6 | simpl2 1193 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → Fun 𝐺) | |
| 7 | funrel 6558 | . . . . 5 ⊢ (Fun 𝐺 → Rel 𝐺) | |
| 8 | resdm 6018 | . . . . 5 ⊢ (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺) |
| 10 | 3, 5, 9 | 3eqtr3d 2779 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) |
| 11 | 10 | ex 412 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 ⊆ 𝐺 → 𝐹 = 𝐺)) |
| 12 | 1, 11 | impbid2 226 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊆ wss 3931 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-fun 6538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |