Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funsseq Structured version   Visualization version   GIF version

Theorem funsseq 35396
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
funsseq ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺𝐹𝐺))

Proof of Theorem funsseq
StepHypRef Expression
1 eqimss 4040 . 2 (𝐹 = 𝐺𝐹𝐺)
2 simpl3 1190 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → dom 𝐹 = dom 𝐺)
32reseq2d 5989 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺))
4 funssres 6602 . . . . 5 ((Fun 𝐺𝐹𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹)
543ad2antl2 1183 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹)
6 simpl2 1189 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → Fun 𝐺)
7 funrel 6575 . . . . 5 (Fun 𝐺 → Rel 𝐺)
8 resdm 6035 . . . . 5 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
96, 7, 83syl 18 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺)
103, 5, 93eqtr3d 2776 . . 3 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
1110ex 411 . 2 ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹𝐺𝐹 = 𝐺))
121, 11impbid2 225 1 ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wss 3949  dom cdm 5682  cres 5684  Rel wrel 5687  Fun wfun 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-fun 6555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator