![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funsseq | Structured version Visualization version GIF version |
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
funsseq | ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4005 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | simpl3 1194 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → dom 𝐹 = dom 𝐺) | |
3 | 2 | reseq2d 5942 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺)) |
4 | funssres 6550 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) | |
5 | 4 | 3ad2antl2 1187 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) |
6 | simpl2 1193 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → Fun 𝐺) | |
7 | funrel 6523 | . . . . 5 ⊢ (Fun 𝐺 → Rel 𝐺) | |
8 | resdm 5987 | . . . . 5 ⊢ (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) | |
9 | 6, 7, 8 | 3syl 18 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺) |
10 | 3, 5, 9 | 3eqtr3d 2785 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) |
11 | 10 | ex 414 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 ⊆ 𝐺 → 𝐹 = 𝐺)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ⊆ wss 3915 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 Fun wfun 6495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-fun 6503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |