![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funsseq | Structured version Visualization version GIF version |
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
funsseq | ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4035 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | simpl3 1190 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → dom 𝐹 = dom 𝐺) | |
3 | 2 | reseq2d 5974 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺)) |
4 | funssres 6585 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) | |
5 | 4 | 3ad2antl2 1183 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹) |
6 | simpl2 1189 | . . . . 5 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → Fun 𝐺) | |
7 | funrel 6558 | . . . . 5 ⊢ (Fun 𝐺 → Rel 𝐺) | |
8 | resdm 6019 | . . . . 5 ⊢ (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) | |
9 | 6, 7, 8 | 3syl 18 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺) |
10 | 3, 5, 9 | 3eqtr3d 2774 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) |
11 | 10 | ex 412 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 ⊆ 𝐺 → 𝐹 = 𝐺)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ⊆ wss 3943 dom cdm 5669 ↾ cres 5671 Rel wrel 5674 Fun wfun 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-fun 6538 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |