Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funsseq Structured version   Visualization version   GIF version

Theorem funsseq 33013
Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
funsseq ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺𝐹𝐺))

Proof of Theorem funsseq
StepHypRef Expression
1 eqimss 4025 . 2 (𝐹 = 𝐺𝐹𝐺)
2 simpl3 1189 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → dom 𝐹 = dom 𝐺)
32reseq2d 5855 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐹) = (𝐺 ↾ dom 𝐺))
4 funssres 6400 . . . . 5 ((Fun 𝐺𝐹𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹)
543ad2antl2 1182 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐹) = 𝐹)
6 simpl2 1188 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → Fun 𝐺)
7 funrel 6374 . . . . 5 (Fun 𝐺 → Rel 𝐺)
8 resdm 5899 . . . . 5 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
96, 7, 83syl 18 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → (𝐺 ↾ dom 𝐺) = 𝐺)
103, 5, 93eqtr3d 2866 . . 3 (((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
1110ex 415 . 2 ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹𝐺𝐹 = 𝐺))
121, 11impbid2 228 1 ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wss 3938  dom cdm 5557  cres 5559  Rel wrel 5562  Fun wfun 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-res 5569  df-fun 6359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator