Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version |
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | isfusgr 27734 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
3 | 2 | simplbi 499 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ‘cfv 6458 Fincfn 8764 Vtxcvtx 27415 USGraphcusgr 27568 FinUSGraphcfusgr 27732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-fusgr 27733 |
This theorem is referenced by: fusgredgfi 27741 fusgrfisstep 27745 fusgrfupgrfs 27747 nbfiusgrfi 27791 vtxdgfusgrf 27913 usgruvtxvdb 27945 vdiscusgrb 27946 vdiscusgr 27947 fusgrn0eqdrusgr 27986 wlksnfi 28321 fusgrhashclwwlkn 28492 clwlksndivn 28499 fusgr2wsp2nb 28747 fusgreghash2wspv 28748 numclwwlk4 28799 |
Copyright terms: Public domain | W3C validator |