| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29297 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 Fincfn 8959 Vtxcvtx 28975 USGraphcusgr 29128 FinUSGraphcfusgr 29295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-fusgr 29296 |
| This theorem is referenced by: fusgredgfi 29304 fusgrfisstep 29308 fusgrfupgrfs 29310 nbfiusgrfi 29354 vtxdgfusgrf 29477 usgruvtxvdb 29509 vdiscusgrb 29510 vdiscusgr 29511 fusgrn0eqdrusgr 29550 wlksnfi 29889 fusgrhashclwwlkn 30060 clwlksndivn 30067 fusgr2wsp2nb 30315 fusgreghash2wspv 30316 numclwwlk4 30367 clnbfiusgrfi 47857 |
| Copyright terms: Public domain | W3C validator |