![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version |
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | isfusgr 29353 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 Fincfn 9003 Vtxcvtx 29031 USGraphcusgr 29184 FinUSGraphcfusgr 29351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-fusgr 29352 |
This theorem is referenced by: fusgredgfi 29360 fusgrfisstep 29364 fusgrfupgrfs 29366 nbfiusgrfi 29410 vtxdgfusgrf 29533 usgruvtxvdb 29565 vdiscusgrb 29566 vdiscusgr 29567 fusgrn0eqdrusgr 29606 wlksnfi 29940 fusgrhashclwwlkn 30111 clwlksndivn 30118 fusgr2wsp2nb 30366 fusgreghash2wspv 30367 numclwwlk4 30418 clnbfiusgrfi 47716 |
Copyright terms: Public domain | W3C validator |