Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version |
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | isfusgr 27666 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6430 Fincfn 8707 Vtxcvtx 27347 USGraphcusgr 27500 FinUSGraphcfusgr 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-fusgr 27665 |
This theorem is referenced by: fusgredgfi 27673 fusgrfisstep 27677 fusgrfupgrfs 27679 nbfiusgrfi 27723 vtxdgfusgrf 27845 usgruvtxvdb 27877 vdiscusgrb 27878 vdiscusgr 27879 fusgrn0eqdrusgr 27918 wlksnfi 28251 fusgrhashclwwlkn 28422 clwlksndivn 28429 fusgr2wsp2nb 28677 fusgreghash2wspv 28678 numclwwlk4 28729 |
Copyright terms: Public domain | W3C validator |