MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrusgr Structured version   Visualization version   GIF version

Theorem fusgrusgr 29011
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Assertion
Ref Expression
fusgrusgr (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem fusgrusgr
StepHypRef Expression
1 eqid 2731 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 29007 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
32simplbi 497 1 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6543  Fincfn 8945  Vtxcvtx 28688  USGraphcusgr 28841  FinUSGraphcfusgr 29005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-fusgr 29006
This theorem is referenced by:  fusgredgfi  29014  fusgrfisstep  29018  fusgrfupgrfs  29020  nbfiusgrfi  29064  vtxdgfusgrf  29186  usgruvtxvdb  29218  vdiscusgrb  29219  vdiscusgr  29220  fusgrn0eqdrusgr  29259  wlksnfi  29593  fusgrhashclwwlkn  29764  clwlksndivn  29771  fusgr2wsp2nb  30019  fusgreghash2wspv  30020  numclwwlk4  30071
  Copyright terms: Public domain W3C validator