MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrusgr Structured version   Visualization version   GIF version

Theorem fusgrusgr 27670
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Assertion
Ref Expression
fusgrusgr (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem fusgrusgr
StepHypRef Expression
1 eqid 2739 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 27666 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
32simplbi 497 1 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6430  Fincfn 8707  Vtxcvtx 27347  USGraphcusgr 27500  FinUSGraphcfusgr 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-fusgr 27665
This theorem is referenced by:  fusgredgfi  27673  fusgrfisstep  27677  fusgrfupgrfs  27679  nbfiusgrfi  27723  vtxdgfusgrf  27845  usgruvtxvdb  27877  vdiscusgrb  27878  vdiscusgr  27879  fusgrn0eqdrusgr  27918  wlksnfi  28251  fusgrhashclwwlkn  28422  clwlksndivn  28429  fusgr2wsp2nb  28677  fusgreghash2wspv  28678  numclwwlk4  28729
  Copyright terms: Public domain W3C validator