MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrusgr Structured version   Visualization version   GIF version

Theorem fusgrusgr 26669
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Assertion
Ref Expression
fusgrusgr (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem fusgrusgr
StepHypRef Expression
1 eqid 2777 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 26665 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
32simplbi 493 1 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6135  Fincfn 8241  Vtxcvtx 26344  USGraphcusgr 26498  FinUSGraphcfusgr 26663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-fusgr 26664
This theorem is referenced by:  fusgredgfi  26672  fusgrfisstep  26676  fusgrfupgrfs  26678  nbfiusgrfi  26723  vtxdgfusgrf  26845  usgruvtxvdb  26877  vdiscusgrb  26878  vdiscusgr  26879  fusgrn0eqdrusgr  26918  wlksnfi  27280  fusgrhashclwwlkn  27477  clwlksndivn  27488  fusgr2wsp2nb  27742  fusgreghash2wspv  27743  numclwwlk4  27818
  Copyright terms: Public domain W3C validator