![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version |
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | isfusgr 26665 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
3 | 2 | simplbi 493 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6135 Fincfn 8241 Vtxcvtx 26344 USGraphcusgr 26498 FinUSGraphcfusgr 26663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-fusgr 26664 |
This theorem is referenced by: fusgredgfi 26672 fusgrfisstep 26676 fusgrfupgrfs 26678 nbfiusgrfi 26723 vtxdgfusgrf 26845 usgruvtxvdb 26877 vdiscusgrb 26878 vdiscusgr 26879 fusgrn0eqdrusgr 26918 wlksnfi 27280 fusgrhashclwwlkn 27477 clwlksndivn 27488 fusgr2wsp2nb 27742 fusgreghash2wspv 27743 numclwwlk4 27818 |
Copyright terms: Public domain | W3C validator |