MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrusgr Structured version   Visualization version   GIF version

Theorem fusgrusgr 27738
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Assertion
Ref Expression
fusgrusgr (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem fusgrusgr
StepHypRef Expression
1 eqid 2736 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 27734 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
32simplbi 499 1 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cfv 6458  Fincfn 8764  Vtxcvtx 27415  USGraphcusgr 27568  FinUSGraphcfusgr 27732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-fusgr 27733
This theorem is referenced by:  fusgredgfi  27741  fusgrfisstep  27745  fusgrfupgrfs  27747  nbfiusgrfi  27791  vtxdgfusgrf  27913  usgruvtxvdb  27945  vdiscusgrb  27946  vdiscusgr  27947  fusgrn0eqdrusgr  27986  wlksnfi  28321  fusgrhashclwwlkn  28492  clwlksndivn  28499  fusgr2wsp2nb  28747  fusgreghash2wspv  28748  numclwwlk4  28799
  Copyright terms: Public domain W3C validator