| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29252 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 Fincfn 8921 Vtxcvtx 28930 USGraphcusgr 29083 FinUSGraphcfusgr 29250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-fusgr 29251 |
| This theorem is referenced by: fusgredgfi 29259 fusgrfisstep 29263 fusgrfupgrfs 29265 nbfiusgrfi 29309 vtxdgfusgrf 29432 usgruvtxvdb 29464 vdiscusgrb 29465 vdiscusgr 29466 fusgrn0eqdrusgr 29505 wlksnfi 29844 fusgrhashclwwlkn 30015 clwlksndivn 30022 fusgr2wsp2nb 30270 fusgreghash2wspv 30271 numclwwlk4 30322 clnbfiusgrfi 47848 |
| Copyright terms: Public domain | W3C validator |