![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version |
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | isfusgr 29350 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 Fincfn 8984 Vtxcvtx 29028 USGraphcusgr 29181 FinUSGraphcfusgr 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-fusgr 29349 |
This theorem is referenced by: fusgredgfi 29357 fusgrfisstep 29361 fusgrfupgrfs 29363 nbfiusgrfi 29407 vtxdgfusgrf 29530 usgruvtxvdb 29562 vdiscusgrb 29563 vdiscusgr 29564 fusgrn0eqdrusgr 29603 wlksnfi 29937 fusgrhashclwwlkn 30108 clwlksndivn 30115 fusgr2wsp2nb 30363 fusgreghash2wspv 30364 numclwwlk4 30415 clnbfiusgrfi 47768 |
Copyright terms: Public domain | W3C validator |