| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29298 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6486 Fincfn 8875 Vtxcvtx 28976 USGraphcusgr 29129 FinUSGraphcfusgr 29296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-fusgr 29297 |
| This theorem is referenced by: fusgredgfi 29305 fusgrfisstep 29309 fusgrfupgrfs 29311 nbfiusgrfi 29355 vtxdgfusgrf 29478 usgruvtxvdb 29510 vdiscusgrb 29511 vdiscusgr 29512 fusgrn0eqdrusgr 29551 wlksnfi 29887 fusgrhashclwwlkn 30061 clwlksndivn 30068 fusgr2wsp2nb 30316 fusgreghash2wspv 30317 numclwwlk4 30368 clnbfiusgrfi 47968 |
| Copyright terms: Public domain | W3C validator |