| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrusgr | ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | isfusgr 29281 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 Fincfn 8879 Vtxcvtx 28959 USGraphcusgr 29112 FinUSGraphcfusgr 29279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-fusgr 29280 |
| This theorem is referenced by: fusgredgfi 29288 fusgrfisstep 29292 fusgrfupgrfs 29294 nbfiusgrfi 29338 vtxdgfusgrf 29461 usgruvtxvdb 29493 vdiscusgrb 29494 vdiscusgr 29495 fusgrn0eqdrusgr 29534 wlksnfi 29870 fusgrhashclwwlkn 30041 clwlksndivn 30048 fusgr2wsp2nb 30296 fusgreghash2wspv 30297 numclwwlk4 30348 clnbfiusgrfi 47829 |
| Copyright terms: Public domain | W3C validator |