MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrusgr Structured version   Visualization version   GIF version

Theorem fusgrusgr 27700
Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Assertion
Ref Expression
fusgrusgr (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem fusgrusgr
StepHypRef Expression
1 eqid 2740 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21isfusgr 27696 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ (Vtx‘𝐺) ∈ Fin))
32simplbi 498 1 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cfv 6432  Fincfn 8725  Vtxcvtx 27377  USGraphcusgr 27530  FinUSGraphcfusgr 27694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-fusgr 27695
This theorem is referenced by:  fusgredgfi  27703  fusgrfisstep  27707  fusgrfupgrfs  27709  nbfiusgrfi  27753  vtxdgfusgrf  27875  usgruvtxvdb  27907  vdiscusgrb  27908  vdiscusgr  27909  fusgrn0eqdrusgr  27948  wlksnfi  28281  fusgrhashclwwlkn  28452  clwlksndivn  28459  fusgr2wsp2nb  28707  fusgreghash2wspv  28708  numclwwlk4  28759
  Copyright terms: Public domain W3C validator