Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgredgfi | Structured version Visualization version GIF version |
Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgredgfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgredgfi.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | fvexi 6840 | . . 3 ⊢ 𝐸 ∈ V |
3 | rabexg 5276 | . . 3 ⊢ (𝐸 ∈ V → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V) |
5 | fusgredgfi.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | 5 | isfusgr 27975 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
7 | hashcl 14172 | . . . 4 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
8 | 6, 7 | simplbiim 505 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝑉) ∈ ℕ0) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑉) ∈ ℕ0) |
10 | fusgrusgr 27979 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
11 | 5, 1 | usgredgleord 27890 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
12 | 10, 11 | sylan 580 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
13 | hashbnd 14152 | . 2 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V ∧ (♯‘𝑉) ∈ ℕ0 ∧ (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
14 | 4, 9, 12, 13 | syl3anc 1370 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 class class class wbr 5093 ‘cfv 6480 Fincfn 8805 ≤ cle 11112 ℕ0cn0 12335 ♯chash 14146 Vtxcvtx 27656 Edgcedg 27707 USGraphcusgr 27809 FinUSGraphcfusgr 27973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-oadd 8372 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-xnn0 12408 df-z 12422 df-uz 12685 df-fz 13342 df-hash 14147 df-edg 27708 df-upgr 27742 df-uspgr 27810 df-usgr 27811 df-fusgr 27974 |
This theorem is referenced by: usgrfilem 27984 |
Copyright terms: Public domain | W3C validator |