![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgredgfi | Structured version Visualization version GIF version |
Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
fusgredgfi | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgredgfi.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | fvexi 6451 | . . 3 ⊢ 𝐸 ∈ V |
3 | rabexg 5038 | . . 3 ⊢ (𝐸 ∈ V → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V) |
5 | fusgredgfi.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | 5 | isfusgr 26622 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
7 | hashcl 13444 | . . . . 5 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
8 | 7 | adantl 475 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ∈ ℕ0) |
9 | 6, 8 | sylbi 209 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (♯‘𝑉) ∈ ℕ0) |
10 | 9 | adantr 474 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (♯‘𝑉) ∈ ℕ0) |
11 | fusgrusgr 26626 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
12 | 5, 1 | usgredgleord 26537 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
13 | 11, 12 | sylan 575 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) |
14 | hashbnd 13423 | . 2 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ V ∧ (♯‘𝑉) ∈ ℕ0 ∧ (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (♯‘𝑉)) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
15 | 4, 10, 13, 14 | syl3anc 1494 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 Vcvv 3414 class class class wbr 4875 ‘cfv 6127 Fincfn 8228 ≤ cle 10399 ℕ0cn0 11625 ♯chash 13417 Vtxcvtx 26301 Edgcedg 26352 USGraphcusgr 26455 FinUSGraphcfusgr 26620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-xnn0 11698 df-z 11712 df-uz 11976 df-fz 12627 df-hash 13418 df-edg 26353 df-upgr 26387 df-uspgr 26456 df-usgr 26457 df-fusgr 26621 |
This theorem is referenced by: usgrfilem 26631 |
Copyright terms: Public domain | W3C validator |