MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgredgfi Structured version   Visualization version   GIF version

Theorem fusgredgfi 29289
Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
fusgredgfi ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉

Proof of Theorem fusgredgfi
StepHypRef Expression
1 fusgredgfi.e . . . 4 𝐸 = (Edg‘𝐺)
21fvexi 6901 . . 3 𝐸 ∈ V
3 rabexg 5319 . . 3 (𝐸 ∈ V → {𝑒𝐸𝑁𝑒} ∈ V)
42, 3mp1i 13 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ V)
5 fusgredgfi.v . . . . 5 𝑉 = (Vtx‘𝐺)
65isfusgr 29282 . . . 4 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
7 hashcl 14378 . . . 4 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
86, 7simplbiim 504 . . 3 (𝐺 ∈ FinUSGraph → (♯‘𝑉) ∈ ℕ0)
98adantr 480 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (♯‘𝑉) ∈ ℕ0)
10 fusgrusgr 29286 . . 3 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
115, 1usgredgleord 29197 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
1210, 11sylan 580 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
13 hashbnd 14358 . 2 (({𝑒𝐸𝑁𝑒} ∈ V ∧ (♯‘𝑉) ∈ ℕ0 ∧ (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉)) → {𝑒𝐸𝑁𝑒} ∈ Fin)
144, 9, 12, 13syl3anc 1372 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464   class class class wbr 5125  cfv 6542  Fincfn 8968  cle 11279  0cn0 12510  chash 14352  Vtxcvtx 28960  Edgcedg 29011  USGraphcusgr 29113  FinUSGraphcfusgr 29280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-fz 13531  df-hash 14353  df-edg 29012  df-upgr 29046  df-uspgr 29114  df-usgr 29115  df-fusgr 29281
This theorem is referenced by:  usgrfilem  29291
  Copyright terms: Public domain W3C validator