| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlksndivn | Structured version Visualization version GIF version | ||
| Description: The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) |
| Ref | Expression |
|---|---|
| clwlksndivn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkndivn 30052 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺))) | |
| 2 | fusgrusgr 29295 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 3 | usgruspgr 29153 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph) |
| 5 | prmnn 16580 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 6 | clwlkssizeeq 30057 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) | |
| 7 | 4, 5, 6 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| 8 | 1, 7 | breqtrd 5112 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 ℕcn 12120 ♯chash 14232 ∥ cdvds 16158 ℙcprime 16577 USPGraphcuspgr 29121 USGraphcusgr 29122 FinUSGraphcfusgr 29289 ClWalkscclwlks 29743 ClWWalksN cclwwlkn 29996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-reps 14671 df-csh 14691 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-dvds 16159 df-gcd 16401 df-prm 16578 df-phi 16672 df-edg 29021 df-uhgr 29031 df-upgr 29055 df-umgr 29056 df-uspgr 29123 df-usgr 29124 df-fusgr 29290 df-wlks 29573 df-clwlks 29744 df-clwwlk 29954 df-clwwlkn 29997 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |