MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksndivn Structured version   Visualization version   GIF version

Theorem clwlksndivn 30032
Description: The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
clwlksndivn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐

Proof of Theorem clwlksndivn
StepHypRef Expression
1 clwwlkndivn 30026 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺)))
2 fusgrusgr 29266 . . . 4 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
3 usgruspgr 29124 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
42, 3syl 17 . . 3 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph)
5 prmnn 16692 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
6 clwlkssizeeq 30031 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}))
74, 5, 6syl2an 596 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}))
81, 7breqtrd 5149 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3419   class class class wbr 5123  cfv 6540  (class class class)co 7412  1st c1st 7993  cn 12247  chash 14350  cdvds 16271  cprime 16689  USPGraphcuspgr 29092  USGraphcusgr 29093  FinUSGraphcfusgr 29260  ClWalkscclwlks 29717   ClWWalksN cclwwlkn 29970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-inf 9464  df-oi 9531  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-rp 13016  df-ico 13374  df-fz 13529  df-fzo 13676  df-fl 13813  df-mod 13891  df-seq 14024  df-exp 14084  df-hash 14351  df-word 14534  df-lsw 14582  df-concat 14590  df-s1 14615  df-substr 14660  df-pfx 14690  df-reps 14788  df-csh 14808  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-dvds 16272  df-gcd 16513  df-prm 16690  df-phi 16784  df-edg 28992  df-uhgr 29002  df-upgr 29026  df-umgr 29027  df-uspgr 29094  df-usgr 29095  df-fusgr 29261  df-wlks 29544  df-clwlks 29718  df-clwwlk 29928  df-clwwlkn 29971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator