MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksndivn Structured version   Visualization version   GIF version

Theorem clwlksndivn 29848
Description: The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
clwlksndivn ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„™) β†’ 𝑁 βˆ₯ (β™―β€˜{𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐

Proof of Theorem clwlksndivn
StepHypRef Expression
1 clwwlkndivn 29842 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„™) β†’ 𝑁 βˆ₯ (β™―β€˜(𝑁 ClWWalksN 𝐺)))
2 fusgrusgr 29087 . . . 4 (𝐺 ∈ FinUSGraph β†’ 𝐺 ∈ USGraph)
3 usgruspgr 28946 . . . 4 (𝐺 ∈ USGraph β†’ 𝐺 ∈ USPGraph)
42, 3syl 17 . . 3 (𝐺 ∈ FinUSGraph β†’ 𝐺 ∈ USPGraph)
5 prmnn 16618 . . 3 (𝑁 ∈ β„™ β†’ 𝑁 ∈ β„•)
6 clwlkssizeeq 29847 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜(𝑁 ClWWalksN 𝐺)) = (β™―β€˜{𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
74, 5, 6syl2an 595 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„™) β†’ (β™―β€˜(𝑁 ClWWalksN 𝐺)) = (β™―β€˜{𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
81, 7breqtrd 5167 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„™) β†’ 𝑁 βˆ₯ (β™―β€˜{𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3426   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  1st c1st 7972  β„•cn 12216  β™―chash 14295   βˆ₯ cdvds 16204  β„™cprime 16615  USPGraphcuspgr 28916  USGraphcusgr 28917  FinUSGraphcfusgr 29081  ClWalkscclwlks 29536   ClWWalksN cclwwlkn 29786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-rp 12981  df-ico 13336  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14033  df-hash 14296  df-word 14471  df-lsw 14519  df-concat 14527  df-s1 14552  df-substr 14597  df-pfx 14627  df-reps 14725  df-csh 14745  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-dvds 16205  df-gcd 16443  df-prm 16616  df-phi 16708  df-edg 28816  df-uhgr 28826  df-upgr 28850  df-umgr 28851  df-uspgr 28918  df-usgr 28919  df-fusgr 29082  df-wlks 29365  df-clwlks 29537  df-clwwlk 29744  df-clwwlkn 29787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator