| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlksndivn | Structured version Visualization version GIF version | ||
| Description: The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) |
| Ref | Expression |
|---|---|
| clwlksndivn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkndivn 30016 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺))) | |
| 2 | fusgrusgr 29256 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 3 | usgruspgr 29114 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph) |
| 5 | prmnn 16650 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 6 | clwlkssizeeq 30021 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) | |
| 7 | 4, 5, 6 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| 8 | 1, 7 | breqtrd 5141 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3411 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 ℕcn 12197 ♯chash 14305 ∥ cdvds 16229 ℙcprime 16647 USPGraphcuspgr 29082 USGraphcusgr 29083 FinUSGraphcfusgr 29250 ClWalkscclwlks 29707 ClWWalksN cclwwlkn 29960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-disj 5083 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-ec 8684 df-qs 8688 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-oi 9481 df-dju 9872 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-rp 12966 df-ico 13325 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-substr 14616 df-pfx 14646 df-reps 14744 df-csh 14764 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16471 df-prm 16648 df-phi 16742 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-fusgr 29251 df-wlks 29534 df-clwlks 29708 df-clwwlk 29918 df-clwwlkn 29961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |