![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlksndivn | Structured version Visualization version GIF version |
Description: The size of the set of closed walks of prime length 𝑁 is divisible by 𝑁. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p". (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) |
Ref | Expression |
---|---|
clwlksndivn | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkndivn 30125 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘(𝑁 ClWWalksN 𝐺))) | |
2 | fusgrusgr 29365 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
3 | usgruspgr 29223 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph) |
5 | prmnn 16717 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
6 | clwlkssizeeq 30130 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) | |
7 | 4, 5, 6 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
8 | 1, 7 | breqtrd 5177 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∥ (♯‘{𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑐)) = 𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3436 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 ℕcn 12273 ♯chash 14375 ∥ cdvds 16296 ℙcprime 16714 USPGraphcuspgr 29191 USGraphcusgr 29192 FinUSGraphcfusgr 29359 ClWalkscclwlks 29816 ClWWalksN cclwwlkn 30069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-ec 8755 df-qs 8759 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-oi 9557 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-rp 13042 df-ico 13399 df-fz 13554 df-fzo 13701 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-lsw 14607 df-concat 14615 df-s1 14640 df-substr 14685 df-pfx 14715 df-reps 14813 df-csh 14833 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-dvds 16297 df-gcd 16538 df-prm 16715 df-phi 16809 df-edg 29091 df-uhgr 29101 df-upgr 29125 df-umgr 29126 df-uspgr 29193 df-usgr 29194 df-fusgr 29360 df-wlks 29643 df-clwlks 29817 df-clwwlk 30027 df-clwwlkn 30070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |