| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgfusgrf | Structured version Visualization version GIF version | ||
| Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdgfusgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdgfusgrf | ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrfis 29241 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
| 2 | fusgrusgr 29233 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 3 | eqid 2734 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | eqid 2734 | . . . . . 6 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 5 | 3, 4 | usgredgffibi 29235 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
| 7 | usgrfun 29069 | . . . . 5 ⊢ (𝐺 ∈ USGraph → Fun (iEdg‘𝐺)) | |
| 8 | fundmfibi 9342 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → ((iEdg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) | |
| 9 | 2, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((iEdg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) |
| 10 | 6, 9 | bitrd 279 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → ((Edg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) |
| 11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝐺 ∈ FinUSGraph → dom (iEdg‘𝐺) ∈ Fin) |
| 12 | vtxdgfusgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | eqid 2734 | . . 3 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 14 | 12, 3, 13 | vtxdgfisf 29388 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ dom (iEdg‘𝐺) ∈ Fin) → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
| 15 | 11, 14 | mpdan 687 | 1 ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 dom cdm 5651 Fun wfun 6521 ⟶wf 6523 ‘cfv 6527 Fincfn 8953 ℕ0cn0 12493 Vtxcvtx 28907 iEdgciedg 28908 Edgcedg 28958 USGraphcusgr 29060 FinUSGraphcfusgr 29227 VtxDegcvtxdg 29377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9907 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-n0 12494 df-xnn0 12567 df-z 12581 df-uz 12845 df-xadd 13121 df-fz 13514 df-hash 14337 df-vtx 28909 df-iedg 28910 df-edg 28959 df-uhgr 28969 df-upgr 28993 df-umgr 28994 df-uspgr 29061 df-usgr 29062 df-fusgr 29228 df-vtxdg 29378 |
| This theorem is referenced by: vtxdgfusgr 29410 |
| Copyright terms: Public domain | W3C validator |