Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdgfusgrf | Structured version Visualization version GIF version |
Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgfusgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
vtxdgfusgrf | ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrfis 27264 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
2 | fusgrusgr 27256 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
3 | eqid 2738 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | eqid 2738 | . . . . . 6 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
5 | 3, 4 | usgredgffibi 27258 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((Edg‘𝐺) ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)) |
7 | usgrfun 27095 | . . . . 5 ⊢ (𝐺 ∈ USGraph → Fun (iEdg‘𝐺)) | |
8 | fundmfibi 8869 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → ((iEdg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) | |
9 | 2, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((iEdg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) |
10 | 6, 9 | bitrd 282 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → ((Edg‘𝐺) ∈ Fin ↔ dom (iEdg‘𝐺) ∈ Fin)) |
11 | 1, 10 | mpbid 235 | . 2 ⊢ (𝐺 ∈ FinUSGraph → dom (iEdg‘𝐺) ∈ Fin) |
12 | vtxdgfusgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | eqid 2738 | . . 3 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
14 | 12, 3, 13 | vtxdgfisf 27410 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ dom (iEdg‘𝐺) ∈ Fin) → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
15 | 11, 14 | mpdan 687 | 1 ⊢ (𝐺 ∈ FinUSGraph → (VtxDeg‘𝐺):𝑉⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2113 dom cdm 5519 Fun wfun 6327 ⟶wf 6329 ‘cfv 6333 Fincfn 8548 ℕ0cn0 11969 Vtxcvtx 26933 iEdgciedg 26934 Edgcedg 26984 USGraphcusgr 27086 FinUSGraphcfusgr 27250 VtxDegcvtxdg 27399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-oadd 8128 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-dju 9396 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-n0 11970 df-xnn0 12042 df-z 12056 df-uz 12318 df-xadd 12584 df-fz 12975 df-hash 13776 df-vtx 26935 df-iedg 26936 df-edg 26985 df-uhgr 26995 df-upgr 27019 df-umgr 27020 df-uspgr 27087 df-usgr 27088 df-fusgr 27251 df-vtxdg 27400 |
This theorem is referenced by: vtxdgfusgr 27432 |
Copyright terms: Public domain | W3C validator |