MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfusgr Structured version   Visualization version   GIF version

Theorem opfusgr 27671
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.)
Assertion
Ref Expression
opfusgr ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))

Proof of Theorem opfusgr
StepHypRef Expression
1 eqid 2739 . . 3 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
21isfusgr 27666 . 2 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin))
3 opvtxfv 27355 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
43eleq1d 2824 . . 3 ((𝑉𝑋𝐸𝑌) → ((Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝑉 ∈ Fin))
54anbi2d 628 . 2 ((𝑉𝑋𝐸𝑌) → ((⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin) ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
62, 5syl5bb 282 1 ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2109  cop 4572  cfv 6430  Fincfn 8707  Vtxcvtx 27347  USGraphcusgr 27500  FinUSGraphcfusgr 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fv 6438  df-1st 7817  df-vtx 27349  df-fusgr 27665
This theorem is referenced by:  fusgrfis  27678
  Copyright terms: Public domain W3C validator