Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opfusgr | Structured version Visualization version GIF version |
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.) |
Ref | Expression |
---|---|
opfusgr | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
2 | 1 | isfusgr 27734 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin)) |
3 | opvtxfv 27423 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
4 | 3 | eleq1d 2821 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((Vtx‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝑉 ∈ Fin)) |
5 | 4 | anbi2d 630 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin) ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
6 | 2, 5 | bitrid 283 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 〈cop 4571 ‘cfv 6458 Fincfn 8764 Vtxcvtx 27415 USGraphcusgr 27568 FinUSGraphcfusgr 27732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-1st 7863 df-vtx 27417 df-fusgr 27733 |
This theorem is referenced by: fusgrfis 27746 |
Copyright terms: Public domain | W3C validator |