MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfusgr Structured version   Visualization version   GIF version

Theorem opfusgr 29250
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.)
Assertion
Ref Expression
opfusgr ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))

Proof of Theorem opfusgr
StepHypRef Expression
1 eqid 2729 . . 3 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
21isfusgr 29245 . 2 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin))
3 opvtxfv 28931 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
43eleq1d 2813 . . 3 ((𝑉𝑋𝐸𝑌) → ((Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝑉 ∈ Fin))
54anbi2d 630 . 2 ((𝑉𝑋𝐸𝑌) → ((⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin) ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
62, 5bitrid 283 1 ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cop 4595  cfv 6511  Fincfn 8918  Vtxcvtx 28923  USGraphcusgr 29076  FinUSGraphcfusgr 29243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-vtx 28925  df-fusgr 29244
This theorem is referenced by:  fusgrfis  29257
  Copyright terms: Public domain W3C validator