MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfusgr Structured version   Visualization version   GIF version

Theorem opfusgr 27739
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.)
Assertion
Ref Expression
opfusgr ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))

Proof of Theorem opfusgr
StepHypRef Expression
1 eqid 2736 . . 3 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
21isfusgr 27734 . 2 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin))
3 opvtxfv 27423 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
43eleq1d 2821 . . 3 ((𝑉𝑋𝐸𝑌) → ((Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝑉 ∈ Fin))
54anbi2d 630 . 2 ((𝑉𝑋𝐸𝑌) → ((⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin) ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
62, 5bitrid 283 1 ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  cop 4571  cfv 6458  Fincfn 8764  Vtxcvtx 27415  USGraphcusgr 27568  FinUSGraphcfusgr 27732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-1st 7863  df-vtx 27417  df-fusgr 27733
This theorem is referenced by:  fusgrfis  27746
  Copyright terms: Public domain W3C validator