MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfusgr Structured version   Visualization version   GIF version

Theorem opfusgr 26802
Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.)
Assertion
Ref Expression
opfusgr ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))

Proof of Theorem opfusgr
StepHypRef Expression
1 eqid 2772 . . 3 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
21isfusgr 26797 . 2 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin))
3 opvtxfv 26486 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
43eleq1d 2844 . . 3 ((𝑉𝑋𝐸𝑌) → ((Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝑉 ∈ Fin))
54anbi2d 619 . 2 ((𝑉𝑋𝐸𝑌) → ((⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) ∈ Fin) ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
62, 5syl5bb 275 1 ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ FinUSGraph ↔ (⟨𝑉, 𝐸⟩ ∈ USGraph ∧ 𝑉 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2050  cop 4441  cfv 6182  Fincfn 8300  Vtxcvtx 26478  USGraphcusgr 26631  FinUSGraphcfusgr 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-iota 6146  df-fun 6184  df-fv 6190  df-1st 7495  df-vtx 26480  df-fusgr 26796
This theorem is referenced by:  fusgrfis  26809
  Copyright terms: Public domain W3C validator