| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opfusgr | Structured version Visualization version GIF version | ||
| Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| opfusgr | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 2 | 1 | isfusgr 29296 | . 2 ⊢ (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 3 | opvtxfv 28982 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((Vtx‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝑉 ∈ Fin)) |
| 5 | 4 | anbi2d 630 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((〈𝑉, 𝐸〉 ∈ USGraph ∧ (Vtx‘〈𝑉, 𝐸〉) ∈ Fin) ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
| 6 | 2, 5 | bitrid 283 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ FinUSGraph ↔ (〈𝑉, 𝐸〉 ∈ USGraph ∧ 𝑉 ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 Fincfn 8869 Vtxcvtx 28974 USGraphcusgr 29127 FinUSGraphcfusgr 29294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-vtx 28976 df-fusgr 29295 |
| This theorem is referenced by: fusgrfis 29308 |
| Copyright terms: Public domain | W3C validator |