MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirnOLD Structured version   Visualization version   GIF version

Theorem fvssunirnOLD 6921
Description: Obsolete version of fvssunirn 6920 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvssunirnOLD (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirnOLD
StepHypRef Expression
1 fvrn0 6917 . . 3 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
2 elssuni 4919 . . 3 ((𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅}))
31, 2ax-mp 5 . 2 (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅})
4 uniun 4912 . . 3 (ran 𝐹 ∪ {∅}) = ( ran 𝐹 {∅})
5 0ex 5289 . . . . 5 ∅ ∈ V
65unisn 4908 . . . 4 {∅} = ∅
76uneq2i 4147 . . 3 ( ran 𝐹 {∅}) = ( ran 𝐹 ∪ ∅)
8 un0 4376 . . 3 ( ran 𝐹 ∪ ∅) = ran 𝐹
94, 7, 83eqtri 2761 . 2 (ran 𝐹 ∪ {∅}) = ran 𝐹
103, 9sseqtri 4014 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  cun 3931  wss 3933  c0 4315  {csn 4608   cuni 4889  ran crn 5668  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-cnv 5675  df-dm 5677  df-rn 5678  df-iota 6495  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator