MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirnOLD Structured version   Visualization version   GIF version

Theorem fvssunirnOLD 6915
Description: Obsolete version of fvssunirn 6914 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvssunirnOLD (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirnOLD
StepHypRef Expression
1 fvrn0 6911 . . 3 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
2 elssuni 4918 . . 3 ((𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅}))
31, 2ax-mp 5 . 2 (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅})
4 uniun 4911 . . 3 (ran 𝐹 ∪ {∅}) = ( ran 𝐹 {∅})
5 0ex 5282 . . . . 5 ∅ ∈ V
65unisn 4907 . . . 4 {∅} = ∅
76uneq2i 4145 . . 3 ( ran 𝐹 {∅}) = ( ran 𝐹 ∪ ∅)
8 un0 4374 . . 3 ( ran 𝐹 ∪ ∅) = ran 𝐹
94, 7, 83eqtri 2763 . 2 (ran 𝐹 ∪ {∅}) = ran 𝐹
103, 9sseqtri 4012 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cun 3929  wss 3931  c0 4313  {csn 4606   cuni 4888  ran crn 5660  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670  df-iota 6489  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator