![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvssunirnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvssunirn 6940 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvssunirnOLD | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6937 | . . 3 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
2 | elssuni 4942 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅}) |
4 | uniun 4935 | . . 3 ⊢ ∪ (ran 𝐹 ∪ {∅}) = (∪ ran 𝐹 ∪ ∪ {∅}) | |
5 | 0ex 5313 | . . . . 5 ⊢ ∅ ∈ V | |
6 | 5 | unisn 4931 | . . . 4 ⊢ ∪ {∅} = ∅ |
7 | 6 | uneq2i 4175 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∪ {∅}) = (∪ ran 𝐹 ∪ ∅) |
8 | un0 4400 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∅) = ∪ ran 𝐹 | |
9 | 4, 7, 8 | 3eqtri 2767 | . 2 ⊢ ∪ (ran 𝐹 ∪ {∅}) = ∪ ran 𝐹 |
10 | 3, 9 | sseqtri 4032 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 ∅c0 4339 {csn 4631 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |