| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fvssunirn 6914 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fvssunirnOLD | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6911 | . . 3 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
| 2 | elssuni 4918 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅}) |
| 4 | uniun 4911 | . . 3 ⊢ ∪ (ran 𝐹 ∪ {∅}) = (∪ ran 𝐹 ∪ ∪ {∅}) | |
| 5 | 0ex 5282 | . . . . 5 ⊢ ∅ ∈ V | |
| 6 | 5 | unisn 4907 | . . . 4 ⊢ ∪ {∅} = ∅ |
| 7 | 6 | uneq2i 4145 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∪ {∅}) = (∪ ran 𝐹 ∪ ∅) |
| 8 | un0 4374 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∅) = ∪ ran 𝐹 | |
| 9 | 4, 7, 8 | 3eqtri 2763 | . 2 ⊢ ∪ (ran 𝐹 ∪ {∅}) = ∪ ran 𝐹 |
| 10 | 3, 9 | sseqtri 4012 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 ∪ cuni 4888 ran crn 5660 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |