MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirnOLD Structured version   Visualization version   GIF version

Theorem fvssunirnOLD 6954
Description: Obsolete version of fvssunirn 6953 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvssunirnOLD (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirnOLD
StepHypRef Expression
1 fvrn0 6950 . . 3 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
2 elssuni 4961 . . 3 ((𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅}))
31, 2ax-mp 5 . 2 (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅})
4 uniun 4954 . . 3 (ran 𝐹 ∪ {∅}) = ( ran 𝐹 {∅})
5 0ex 5325 . . . . 5 ∅ ∈ V
65unisn 4950 . . . 4 {∅} = ∅
76uneq2i 4188 . . 3 ( ran 𝐹 {∅}) = ( ran 𝐹 ∪ ∅)
8 un0 4417 . . 3 ( ran 𝐹 ∪ ∅) = ran 𝐹
94, 7, 83eqtri 2772 . 2 (ran 𝐹 ∪ {∅}) = ran 𝐹
103, 9sseqtri 4045 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cun 3974  wss 3976  c0 4352  {csn 4648   cuni 4931  ran crn 5701  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator