![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvssunirnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvssunirn 6924 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvssunirnOLD | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6921 | . . 3 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
2 | elssuni 4935 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅}) |
4 | uniun 4928 | . . 3 ⊢ ∪ (ran 𝐹 ∪ {∅}) = (∪ ran 𝐹 ∪ ∪ {∅}) | |
5 | 0ex 5301 | . . . . 5 ⊢ ∅ ∈ V | |
6 | 5 | unisn 4924 | . . . 4 ⊢ ∪ {∅} = ∅ |
7 | 6 | uneq2i 4156 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∪ {∅}) = (∪ ran 𝐹 ∪ ∅) |
8 | un0 4386 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∅) = ∪ ran 𝐹 | |
9 | 4, 7, 8 | 3eqtri 2759 | . 2 ⊢ ∪ (ran 𝐹 ∪ {∅}) = ∪ ran 𝐹 |
10 | 3, 9 | sseqtri 4014 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ∪ cun 3942 ⊆ wss 3944 ∅c0 4318 {csn 4624 ∪ cuni 4903 ran crn 5673 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-cnv 5680 df-dm 5682 df-rn 5683 df-iota 6494 df-fv 6550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |