| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fvssunirn 6920 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fvssunirnOLD | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrn0 6917 | . . 3 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
| 2 | elssuni 4919 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅}) |
| 4 | uniun 4912 | . . 3 ⊢ ∪ (ran 𝐹 ∪ {∅}) = (∪ ran 𝐹 ∪ ∪ {∅}) | |
| 5 | 0ex 5289 | . . . . 5 ⊢ ∅ ∈ V | |
| 6 | 5 | unisn 4908 | . . . 4 ⊢ ∪ {∅} = ∅ |
| 7 | 6 | uneq2i 4147 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∪ {∅}) = (∪ ran 𝐹 ∪ ∅) |
| 8 | un0 4376 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∅) = ∪ ran 𝐹 | |
| 9 | 4, 7, 8 | 3eqtri 2761 | . 2 ⊢ ∪ (ran 𝐹 ∪ {∅}) = ∪ ran 𝐹 |
| 10 | 3, 9 | sseqtri 4014 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ∪ cun 3931 ⊆ wss 3933 ∅c0 4315 {csn 4608 ∪ cuni 4889 ran crn 5668 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-cnv 5675 df-dm 5677 df-rn 5678 df-iota 6495 df-fv 6550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |