MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirnOLD Structured version   Visualization version   GIF version

Theorem fvssunirnOLD 6941
Description: Obsolete version of fvssunirn 6940 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvssunirnOLD (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirnOLD
StepHypRef Expression
1 fvrn0 6937 . . 3 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
2 elssuni 4942 . . 3 ((𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅}))
31, 2ax-mp 5 . 2 (𝐹𝑋) ⊆ (ran 𝐹 ∪ {∅})
4 uniun 4935 . . 3 (ran 𝐹 ∪ {∅}) = ( ran 𝐹 {∅})
5 0ex 5313 . . . . 5 ∅ ∈ V
65unisn 4931 . . . 4 {∅} = ∅
76uneq2i 4175 . . 3 ( ran 𝐹 {∅}) = ( ran 𝐹 ∪ ∅)
8 un0 4400 . . 3 ( ran 𝐹 ∪ ∅) = ran 𝐹
94, 7, 83eqtri 2767 . 2 (ran 𝐹 ∪ {∅}) = ran 𝐹
103, 9sseqtri 4032 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cun 3961  wss 3963  c0 4339  {csn 4631   cuni 4912  ran crn 5690  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700  df-iota 6516  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator