| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6913 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3967 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 ∪ cuni 4888 ran crn 5660 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: ovssunirn 7446 marypha2lem1 9452 acnlem 10067 fin23lem29 10360 itunitc 10440 hsmexlem5 10449 wunfv 10751 wunex2 10757 strfvss 17211 prdsvallem 17473 prdsval 17474 prdsbas 17476 prdsplusg 17477 prdsmulr 17478 prdsvsca 17479 prdshom 17486 mreunirn 17618 mrcfval 17625 mrcssv 17631 mrisval 17647 sscpwex 17833 wunfunc 17919 catcxpccl 18224 comppfsc 23475 filunirn 23825 elflim 23914 flffval 23932 fclsval 23951 isfcls 23952 fcfval 23976 tsmsxplem1 24096 xmetunirn 24281 mopnval 24382 tmsval 24425 cfilfval 25221 caufval 25232 issgon 34159 elrnsiga 34162 volmeas 34267 omssubadd 34337 neibastop2lem 36383 ctbssinf 37429 ismtyval 37829 dicval 41200 prjcrv0 42623 ismrc 42691 nacsfix 42702 hbt 43121 |
| Copyright terms: Public domain | W3C validator |