| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6890 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: ovssunirn 7423 marypha2lem1 9386 acnlem 10001 fin23lem29 10294 itunitc 10374 hsmexlem5 10383 wunfv 10685 wunex2 10691 strfvss 17157 prdsvallem 17417 prdsval 17418 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 mreunirn 17562 mrcfval 17569 mrcssv 17575 mrisval 17591 sscpwex 17777 wunfunc 17863 catcxpccl 18168 comppfsc 23419 filunirn 23769 elflim 23858 flffval 23876 fclsval 23895 isfcls 23896 fcfval 23920 tsmsxplem1 24040 xmetunirn 24225 mopnval 24326 tmsval 24369 cfilfval 25164 caufval 25175 issgon 34113 elrnsiga 34116 volmeas 34221 omssubadd 34291 neibastop2lem 36348 ctbssinf 37394 ismtyval 37794 dicval 41170 prjcrv0 42621 ismrc 42689 nacsfix 42700 hbt 43119 |
| Copyright terms: Public domain | W3C validator |