![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version |
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
Ref | Expression |
---|---|
fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvunirn 6923 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
2 | 1 | ssriv 3986 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3948 ∪ cuni 4908 ran crn 5677 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-iota 6495 df-fv 6551 |
This theorem is referenced by: ovssunirn 7447 marypha2lem1 9432 acnlem 10045 fin23lem29 10338 itunitc 10418 hsmexlem5 10427 wunfv 10729 wunex2 10735 strfvss 17122 prdsvallem 17402 prdsval 17403 prdsbas 17405 prdsplusg 17406 prdsmulr 17407 prdsvsca 17408 prdshom 17415 mreunirn 17547 mrcfval 17554 mrcssv 17560 mrisval 17576 sscpwex 17764 wunfunc 17851 wunfuncOLD 17852 catcxpccl 18161 catcxpcclOLD 18162 comppfsc 23043 filunirn 23393 elflim 23482 flffval 23500 fclsval 23519 isfcls 23520 fcfval 23544 tsmsxplem1 23664 xmetunirn 23850 mopnval 23951 tmsval 23996 cfilfval 24788 caufval 24799 issgon 33190 elrnsiga 33193 volmeas 33298 omssubadd 33368 neibastop2lem 35331 ctbssinf 36373 ismtyval 36754 dicval 40133 prjcrv0 41457 ismrc 41521 nacsfix 41532 hbt 41954 |
Copyright terms: Public domain | W3C validator |