| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6852 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3939 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 ∪ cuni 4858 ran crn 5620 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: ovssunirn 7385 marypha2lem1 9325 acnlem 9942 fin23lem29 10235 itunitc 10315 hsmexlem5 10324 wunfv 10626 wunex2 10632 strfvss 17098 prdsvallem 17358 prdsval 17359 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 mreunirn 17503 mrcfval 17514 mrcssv 17520 mrisval 17536 sscpwex 17722 wunfunc 17808 catcxpccl 18113 comppfsc 23417 filunirn 23767 elflim 23856 flffval 23874 fclsval 23893 isfcls 23894 fcfval 23918 tsmsxplem1 24038 xmetunirn 24223 mopnval 24324 tmsval 24367 cfilfval 25162 caufval 25173 issgon 34106 elrnsiga 34109 volmeas 34214 omssubadd 34284 neibastop2lem 36354 ctbssinf 37400 ismtyval 37800 dicval 41175 prjcrv0 42626 ismrc 42694 nacsfix 42705 hbt 43123 |
| Copyright terms: Public domain | W3C validator |