![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version |
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
Ref | Expression |
---|---|
fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvunirn 6939 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
2 | 1 | ssriv 3999 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 |
This theorem is referenced by: ovssunirn 7467 marypha2lem1 9473 acnlem 10086 fin23lem29 10379 itunitc 10459 hsmexlem5 10468 wunfv 10770 wunex2 10776 strfvss 17221 prdsvallem 17501 prdsval 17502 prdsbas 17504 prdsplusg 17505 prdsmulr 17506 prdsvsca 17507 prdshom 17514 mreunirn 17646 mrcfval 17653 mrcssv 17659 mrisval 17675 sscpwex 17863 wunfunc 17952 wunfuncOLD 17953 catcxpccl 18263 catcxpcclOLD 18264 comppfsc 23556 filunirn 23906 elflim 23995 flffval 24013 fclsval 24032 isfcls 24033 fcfval 24057 tsmsxplem1 24177 xmetunirn 24363 mopnval 24464 tmsval 24509 cfilfval 25312 caufval 25323 issgon 34104 elrnsiga 34107 volmeas 34212 omssubadd 34282 neibastop2lem 36343 ctbssinf 37389 ismtyval 37787 dicval 41159 prjcrv0 42620 ismrc 42689 nacsfix 42700 hbt 43119 |
Copyright terms: Public domain | W3C validator |