![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version |
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
Ref | Expression |
---|---|
fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvunirn 6952 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
2 | 1 | ssriv 4012 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 |
This theorem is referenced by: ovssunirn 7484 marypha2lem1 9504 acnlem 10117 fin23lem29 10410 itunitc 10490 hsmexlem5 10499 wunfv 10801 wunex2 10807 strfvss 17234 prdsvallem 17514 prdsval 17515 prdsbas 17517 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 mreunirn 17659 mrcfval 17666 mrcssv 17672 mrisval 17688 sscpwex 17876 wunfunc 17965 wunfuncOLD 17966 catcxpccl 18276 catcxpcclOLD 18277 comppfsc 23561 filunirn 23911 elflim 24000 flffval 24018 fclsval 24037 isfcls 24038 fcfval 24062 tsmsxplem1 24182 xmetunirn 24368 mopnval 24469 tmsval 24514 cfilfval 25317 caufval 25328 issgon 34087 elrnsiga 34090 volmeas 34195 omssubadd 34265 neibastop2lem 36326 ctbssinf 37372 ismtyval 37760 dicval 41133 prjcrv0 42588 ismrc 42657 nacsfix 42668 hbt 43087 |
Copyright terms: Public domain | W3C validator |