MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirn Structured version   Visualization version   GIF version

Theorem fvssunirn 6873
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.)
Assertion
Ref Expression
fvssunirn (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6872 . 2 (𝑥 ∈ (𝐹𝑋) → 𝑥 ran 𝐹)
21ssriv 3947 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3911   cuni 4867  ran crn 5632  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-iota 6452  df-fv 6507
This theorem is referenced by:  ovssunirn  7405  marypha2lem1  9362  acnlem  9979  fin23lem29  10272  itunitc  10352  hsmexlem5  10361  wunfv  10663  wunex2  10669  strfvss  17134  prdsvallem  17394  prdsval  17395  prdsbas  17397  prdsplusg  17398  prdsmulr  17399  prdsvsca  17400  prdshom  17407  mreunirn  17539  mrcfval  17550  mrcssv  17556  mrisval  17572  sscpwex  17758  wunfunc  17844  catcxpccl  18149  comppfsc  23453  filunirn  23803  elflim  23892  flffval  23910  fclsval  23929  isfcls  23930  fcfval  23954  tsmsxplem1  24074  xmetunirn  24259  mopnval  24360  tmsval  24403  cfilfval  25198  caufval  25209  issgon  34107  elrnsiga  34110  volmeas  34215  omssubadd  34285  neibastop2lem  36342  ctbssinf  37388  ismtyval  37788  dicval  41164  prjcrv0  42615  ismrc  42683  nacsfix  42694  hbt  43113
  Copyright terms: Public domain W3C validator