| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6893 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: ovssunirn 7426 marypha2lem1 9393 acnlem 10008 fin23lem29 10301 itunitc 10381 hsmexlem5 10390 wunfv 10692 wunex2 10698 strfvss 17164 prdsvallem 17424 prdsval 17425 prdsbas 17427 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 mreunirn 17569 mrcfval 17576 mrcssv 17582 mrisval 17598 sscpwex 17784 wunfunc 17870 catcxpccl 18175 comppfsc 23426 filunirn 23776 elflim 23865 flffval 23883 fclsval 23902 isfcls 23903 fcfval 23927 tsmsxplem1 24047 xmetunirn 24232 mopnval 24333 tmsval 24376 cfilfval 25171 caufval 25182 issgon 34120 elrnsiga 34123 volmeas 34228 omssubadd 34298 neibastop2lem 36355 ctbssinf 37401 ismtyval 37801 dicval 41177 prjcrv0 42628 ismrc 42696 nacsfix 42707 hbt 43126 |
| Copyright terms: Public domain | W3C validator |