| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6872 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3947 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: ovssunirn 7405 marypha2lem1 9362 acnlem 9977 fin23lem29 10270 itunitc 10350 hsmexlem5 10359 wunfv 10661 wunex2 10667 strfvss 17133 prdsvallem 17393 prdsval 17394 prdsbas 17396 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 mreunirn 17538 mrcfval 17549 mrcssv 17555 mrisval 17571 sscpwex 17757 wunfunc 17843 catcxpccl 18148 comppfsc 23452 filunirn 23802 elflim 23891 flffval 23909 fclsval 23928 isfcls 23929 fcfval 23953 tsmsxplem1 24073 xmetunirn 24258 mopnval 24359 tmsval 24402 cfilfval 25197 caufval 25208 issgon 34106 elrnsiga 34109 volmeas 34214 omssubadd 34284 neibastop2lem 36341 ctbssinf 37387 ismtyval 37787 dicval 41163 prjcrv0 42614 ismrc 42682 nacsfix 42693 hbt 43112 |
| Copyright terms: Public domain | W3C validator |