| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6852 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3933 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ∪ cuni 4856 ran crn 5615 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: ovssunirn 7382 marypha2lem1 9319 acnlem 9939 fin23lem29 10232 itunitc 10312 hsmexlem5 10321 wunfv 10623 wunex2 10629 strfvss 17098 prdsvallem 17358 prdsval 17359 prdsbas 17361 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 mreunirn 17503 mrcfval 17514 mrcssv 17520 mrisval 17536 sscpwex 17722 wunfunc 17808 catcxpccl 18113 comppfsc 23447 filunirn 23797 elflim 23886 flffval 23904 fclsval 23923 isfcls 23924 fcfval 23948 tsmsxplem1 24068 xmetunirn 24252 mopnval 24353 tmsval 24396 cfilfval 25191 caufval 25202 issgon 34136 elrnsiga 34139 volmeas 34244 omssubadd 34313 neibastop2lem 36404 ctbssinf 37450 ismtyval 37839 dicval 41274 prjcrv0 42725 ismrc 42793 nacsfix 42804 hbt 43222 |
| Copyright terms: Public domain | W3C validator |