Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version |
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrn0 6784 | . . 3 ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | |
2 | elssuni 4868 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹‘𝑋) ⊆ ∪ (ran 𝐹 ∪ {∅}) |
4 | uniun 4861 | . . 3 ⊢ ∪ (ran 𝐹 ∪ {∅}) = (∪ ran 𝐹 ∪ ∪ {∅}) | |
5 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
6 | 5 | unisn 4858 | . . . 4 ⊢ ∪ {∅} = ∅ |
7 | 6 | uneq2i 4090 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∪ {∅}) = (∪ ran 𝐹 ∪ ∅) |
8 | un0 4321 | . . 3 ⊢ (∪ ran 𝐹 ∪ ∅) = ∪ ran 𝐹 | |
9 | 4, 7, 8 | 3eqtri 2770 | . 2 ⊢ ∪ (ran 𝐹 ∪ {∅}) = ∪ ran 𝐹 |
10 | 3, 9 | sseqtri 3953 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: ovssunirn 7291 marypha2lem1 9124 acnlem 9735 fin23lem29 10028 itunitc 10108 hsmexlem5 10117 wunfv 10419 wunex2 10425 strfvss 16816 prdsvallem 17082 prdsval 17083 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 mreunirn 17227 mrcfval 17234 mrcssv 17240 mrisval 17256 sscpwex 17444 wunfunc 17530 wunfuncOLD 17531 catcxpccl 17840 catcxpcclOLD 17841 comppfsc 22591 filunirn 22941 elflim 23030 flffval 23048 fclsval 23067 isfcls 23068 fcfval 23092 tsmsxplem1 23212 xmetunirn 23398 mopnval 23499 tmsval 23542 cfilfval 24333 caufval 24344 issgon 31991 elrnsiga 31994 volmeas 32099 omssubadd 32167 neibastop2lem 34476 ctbssinf 35504 ismtyval 35885 dicval 39117 ismrc 40439 nacsfix 40450 hbt 40871 |
Copyright terms: Public domain | W3C validator |