| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvssunirn | Structured version Visualization version GIF version | ||
| Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvssunirn | ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn 6872 | . 2 ⊢ (𝑥 ∈ (𝐹‘𝑋) → 𝑥 ∈ ∪ ran 𝐹) | |
| 2 | 1 | ssriv 3947 | 1 ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: ovssunirn 7405 marypha2lem1 9362 acnlem 9979 fin23lem29 10272 itunitc 10352 hsmexlem5 10361 wunfv 10663 wunex2 10669 strfvss 17134 prdsvallem 17394 prdsval 17395 prdsbas 17397 prdsplusg 17398 prdsmulr 17399 prdsvsca 17400 prdshom 17407 mreunirn 17539 mrcfval 17550 mrcssv 17556 mrisval 17572 sscpwex 17758 wunfunc 17844 catcxpccl 18149 comppfsc 23453 filunirn 23803 elflim 23892 flffval 23910 fclsval 23929 isfcls 23930 fcfval 23954 tsmsxplem1 24074 xmetunirn 24259 mopnval 24360 tmsval 24403 cfilfval 25198 caufval 25209 issgon 34107 elrnsiga 34110 volmeas 34215 omssubadd 34285 neibastop2lem 36342 ctbssinf 37388 ismtyval 37788 dicval 41164 prjcrv0 42615 ismrc 42683 nacsfix 42694 hbt 43113 |
| Copyright terms: Public domain | W3C validator |