MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirn Structured version   Visualization version   GIF version

Theorem fvssunirn 6891
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.)
Assertion
Ref Expression
fvssunirn (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6890 . 2 (𝑥 ∈ (𝐹𝑋) → 𝑥 ran 𝐹)
21ssriv 3950 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3914   cuni 4871  ran crn 5639  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519
This theorem is referenced by:  ovssunirn  7423  marypha2lem1  9386  acnlem  10001  fin23lem29  10294  itunitc  10374  hsmexlem5  10383  wunfv  10685  wunex2  10691  strfvss  17157  prdsvallem  17417  prdsval  17418  prdsbas  17420  prdsplusg  17421  prdsmulr  17422  prdsvsca  17423  prdshom  17430  mreunirn  17562  mrcfval  17569  mrcssv  17575  mrisval  17591  sscpwex  17777  wunfunc  17863  catcxpccl  18168  comppfsc  23419  filunirn  23769  elflim  23858  flffval  23876  fclsval  23895  isfcls  23896  fcfval  23920  tsmsxplem1  24040  xmetunirn  24225  mopnval  24326  tmsval  24369  cfilfval  25164  caufval  25175  issgon  34113  elrnsiga  34116  volmeas  34221  omssubadd  34291  neibastop2lem  36348  ctbssinf  37394  ismtyval  37794  dicval  41170  prjcrv0  42621  ismrc  42689  nacsfix  42700  hbt  43119
  Copyright terms: Public domain W3C validator