MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvssunirn Structured version   Visualization version   GIF version

Theorem fvssunirn 6873
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.)
Assertion
Ref Expression
fvssunirn (𝐹𝑋) ⊆ ran 𝐹

Proof of Theorem fvssunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6872 . 2 (𝑥 ∈ (𝐹𝑋) → 𝑥 ran 𝐹)
21ssriv 3947 1 (𝐹𝑋) ⊆ ran 𝐹
Colors of variables: wff setvar class
Syntax hints:  wss 3911   cuni 4867  ran crn 5632  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-iota 6452  df-fv 6507
This theorem is referenced by:  ovssunirn  7405  marypha2lem1  9362  acnlem  9977  fin23lem29  10270  itunitc  10350  hsmexlem5  10359  wunfv  10661  wunex2  10667  strfvss  17133  prdsvallem  17393  prdsval  17394  prdsbas  17396  prdsplusg  17397  prdsmulr  17398  prdsvsca  17399  prdshom  17406  mreunirn  17538  mrcfval  17549  mrcssv  17555  mrisval  17571  sscpwex  17757  wunfunc  17843  catcxpccl  18148  comppfsc  23452  filunirn  23802  elflim  23891  flffval  23909  fclsval  23928  isfcls  23929  fcfval  23953  tsmsxplem1  24073  xmetunirn  24258  mopnval  24359  tmsval  24402  cfilfval  25197  caufval  25208  issgon  34106  elrnsiga  34109  volmeas  34214  omssubadd  34284  neibastop2lem  36341  ctbssinf  37387  ismtyval  37787  dicval  41163  prjcrv0  42614  ismrc  42682  nacsfix  42693  hbt  43112
  Copyright terms: Public domain W3C validator