MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrgrpOLD Structured version   Visualization version   GIF version

Theorem psrgrpOLD 21866
Description: Obsolete version of psrgrp 21865 as of 7-Feb-2025. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrpOLD (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrpOLD
Dummy variables 𝑥 𝑠 𝑟 𝑡 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2730 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
6 psrgrp.r . . . . 5 (𝜑𝑅 ∈ Grp)
76grpmgmd 18893 . . . 4 (𝜑𝑅 ∈ Mgm)
873ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Mgm)
9 simp2 1137 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
10 simp3 1138 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
113, 4, 5, 8, 9, 10psraddcl 21847 . 2 ((𝜑𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
12 ovex 7420 . . . . . . 7 (ℕ0m 𝐼) ∈ V
1312rabex 5294 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1413a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
15 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
17 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
183, 15, 16, 4, 17psrelbas 21843 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
19 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
203, 15, 16, 4, 19psrelbas 21843 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
21 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
223, 15, 16, 4, 21psrelbas 21843 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
236adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
24 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
2515, 24grpass 18874 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2623, 25sylan 580 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(+g𝑅)𝑡) = (𝑟(+g𝑅)(𝑠(+g𝑅)𝑡)))
2714, 18, 20, 22, 26caofass 7693 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
283, 4, 24, 5, 17, 19psradd 21846 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) = (𝑥f (+g𝑅)𝑦))
2928oveq1d 7402 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧) = ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧))
303, 4, 24, 5, 19, 21psradd 21846 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦f (+g𝑅)𝑧))
3130oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
3227, 29, 313eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧) = (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)))
33113adant3r3 1185 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
343, 4, 24, 5, 33, 21psradd 21846 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = ((𝑥(+g𝑆)𝑦) ∘f (+g𝑅)𝑧))
357adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Mgm)
363, 4, 5, 35, 19, 21psraddcl 21847 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
373, 4, 24, 5, 17, 36psradd 21846 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)) = (𝑥f (+g𝑅)(𝑦(+g𝑆)𝑧)))
3832, 34, 373eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑆)𝑦)(+g𝑆)𝑧) = (𝑥(+g𝑆)(𝑦(+g𝑆)𝑧)))
39 psrgrp.i . . 3 (𝜑𝐼𝑉)
40 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
413, 39, 6, 16, 40, 4psr0cl 21861 . 2 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
4239adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐼𝑉)
436adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Grp)
44 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
453, 42, 43, 16, 40, 4, 5, 44psr0lid 21862 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})(+g𝑆)𝑥) = 𝑥)
46 eqid 2729 . . 3 (invg𝑅) = (invg𝑅)
473, 42, 43, 16, 46, 4, 44psrnegcl 21863 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((invg𝑅) ∘ 𝑥) ∈ (Base‘𝑆))
483, 42, 43, 16, 46, 4, 44, 40, 5psrlinv 21864 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → (((invg𝑅) ∘ 𝑥)(+g𝑆)𝑥) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
491, 2, 11, 38, 41, 45, 47, 48isgrpd 18890 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  {csn 4589   × cxp 5636  ccnv 5637  cima 5641  ccom 5642  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mgmcmgm 18565  Grpcgrp 18865  invgcminusg 18866   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-psr 21818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator