MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlmod Structured version   Visualization version   GIF version

Theorem psrlmod 21151
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrlmod (𝜑𝑆 ∈ LMod)

Proof of Theorem psrlmod
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2740 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2740 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 psrring.i . . 3 (𝜑𝐼𝑉)
5 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
63, 4, 5psrsca 21139 . 2 (𝜑𝑅 = (Scalar‘𝑆))
7 eqidd 2740 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2740 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 eqidd 2740 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
10 eqidd 2740 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
11 eqidd 2740 . 2 (𝜑 → (1r𝑅) = (1r𝑅))
12 ringgrp 19769 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
135, 12syl 17 . . 3 (𝜑𝑅 ∈ Grp)
143, 4, 13psrgrp 21148 . 2 (𝜑𝑆 ∈ Grp)
15 eqid 2739 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2739 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2739 . . 3 (Base‘𝑆) = (Base‘𝑆)
1853ad2ant1 1131 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
19 simp2 1135 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
20 simp3 1136 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
213, 15, 16, 17, 18, 19, 20psrvscacl 21143 . 2 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
22 ovex 7301 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2322rabex 5259 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
25 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
26 fconst6g 6659 . . . . . 6 (𝑥 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2725, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
28 eqid 2739 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
29 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
303, 16, 28, 17, 29psrelbas 21129 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
31 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
323, 16, 28, 17, 31psrelbas 21129 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
335adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
34 eqid 2739 . . . . . . 7 (+g𝑅) = (+g𝑅)
35 eqid 2739 . . . . . . 7 (.r𝑅) = (.r𝑅)
3616, 34, 35ringdi 19786 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3733, 36sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3824, 27, 30, 32, 37caofdi 7563 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
39 eqid 2739 . . . . . 6 (+g𝑆) = (+g𝑆)
403, 17, 34, 39, 29, 31psradd 21132 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦f (+g𝑅)𝑧))
4140oveq2d 7284 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)))
423, 15, 16, 17, 35, 28, 25, 29psrvsca 21141 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦))
433, 15, 16, 17, 35, 28, 25, 31psrvsca 21141 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
4442, 43oveq12d 7286 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
4538, 41, 443eqtr4d 2789 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
4613adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
473, 17, 39, 46, 29, 31psraddcl 21133 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
483, 15, 16, 17, 35, 28, 25, 47psrvsca 21141 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)))
49213adant3r3 1182 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
503, 15, 16, 17, 33, 25, 31psrvscacl 21143 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
513, 17, 34, 39, 49, 50psradd 21132 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
5245, 48, 513eqtr4d 2789 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)))
53 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
54 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
553, 15, 16, 17, 35, 28, 53, 54psrvsca 21141 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
56 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑅))
573, 15, 16, 17, 35, 28, 56, 54psrvsca 21141 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧))
5855, 57oveq12d 7286 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
5923a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
603, 16, 28, 17, 54psrelbas 21129 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6153, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
62 fconst6g 6659 . . . . . 6 (𝑦 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6356, 62syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
645adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
6516, 34, 35ringdir 19787 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6664, 65sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6759, 60, 61, 63, 66caofdir 7564 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
6859, 53, 56ofc12 7552 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}))
6968oveq1d 7283 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
7058, 67, 693eqtr2rd 2786 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7116, 34ringacl 19798 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7264, 53, 56, 71syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
733, 15, 16, 17, 35, 28, 72, 54psrvsca 21141 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
743, 15, 16, 17, 64, 53, 54psrvscacl 21143 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
753, 15, 16, 17, 64, 56, 54psrvscacl 21143 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
763, 17, 34, 39, 74, 75psradd 21132 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7770, 73, 763eqtr4d 2789 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)))
7857oveq2d 7284 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
7916, 35ringass 19784 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8064, 79sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8159, 61, 63, 60, 80caofass 7561 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
8259, 53, 56ofc12 7552 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}))
8382oveq1d 7283 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
8478, 81, 833eqtr2rd 2786 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8516, 35ringcl 19781 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
8664, 53, 56, 85syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
873, 15, 16, 17, 35, 28, 86, 54psrvsca 21141 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
883, 15, 16, 17, 35, 28, 53, 75psrvsca 21141 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8984, 87, 883eqtr4d 2789 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)))
905adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
91 eqid 2739 . . . . . 6 (1r𝑅) = (1r𝑅)
9216, 91ringidcl 19788 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
9390, 92syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
94 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
953, 15, 16, 17, 35, 28, 93, 94psrvsca 21141 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥))
9623a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
973, 16, 28, 17, 94psrelbas 21129 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
9816, 35, 91ringlidm 19791 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
9990, 98sylan 579 . . . 4 (((𝜑𝑥 ∈ (Base‘𝑆)) ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
10096, 97, 93, 99caofid0l 7555 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥) = 𝑥)
10195, 100eqtrd 2779 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = 𝑥)
1021, 2, 6, 7, 8, 9, 10, 11, 5, 14, 21, 52, 77, 89, 101islmodd 20110 1 (𝜑𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430  {csn 4566   × cxp 5586  ccnv 5587  cima 5591  wf 6426  cfv 6430  (class class class)co 7268  f cof 7522  m cmap 8589  Fincfn 8707  cn 11956  0cn0 12216  Basecbs 16893  +gcplusg 16943  .rcmulr 16944   ·𝑠 cvsca 16947  Grpcgrp 18558  1rcur 19718  Ringcrg 19764  LModclmod 20104   mPwSer cmps 21088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-tset 16962  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-mgp 19702  df-ur 19719  df-ring 19766  df-lmod 20106  df-psr 21093
This theorem is referenced by:  psrassa  21164  mpllmod  21204  mplbas2  21224  opsrlmod  21398
  Copyright terms: Public domain W3C validator