MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlmod Structured version   Visualization version   GIF version

Theorem psrlmod 21080
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrlmod (𝜑𝑆 ∈ LMod)

Proof of Theorem psrlmod
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2739 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 psrring.i . . 3 (𝜑𝐼𝑉)
5 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
63, 4, 5psrsca 21068 . 2 (𝜑𝑅 = (Scalar‘𝑆))
7 eqidd 2739 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2739 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 eqidd 2739 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
10 eqidd 2739 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
11 eqidd 2739 . 2 (𝜑 → (1r𝑅) = (1r𝑅))
12 ringgrp 19703 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
135, 12syl 17 . . 3 (𝜑𝑅 ∈ Grp)
143, 4, 13psrgrp 21077 . 2 (𝜑𝑆 ∈ Grp)
15 eqid 2738 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
1853ad2ant1 1131 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
19 simp2 1135 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
20 simp3 1136 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
213, 15, 16, 17, 18, 19, 20psrvscacl 21072 . 2 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
22 ovex 7288 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2322rabex 5251 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
25 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
26 fconst6g 6647 . . . . . 6 (𝑥 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2725, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
28 eqid 2738 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
29 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
303, 16, 28, 17, 29psrelbas 21058 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
31 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
323, 16, 28, 17, 31psrelbas 21058 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
335adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
34 eqid 2738 . . . . . . 7 (+g𝑅) = (+g𝑅)
35 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
3616, 34, 35ringdi 19720 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3733, 36sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3824, 27, 30, 32, 37caofdi 7550 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
39 eqid 2738 . . . . . 6 (+g𝑆) = (+g𝑆)
403, 17, 34, 39, 29, 31psradd 21061 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦f (+g𝑅)𝑧))
4140oveq2d 7271 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)))
423, 15, 16, 17, 35, 28, 25, 29psrvsca 21070 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦))
433, 15, 16, 17, 35, 28, 25, 31psrvsca 21070 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
4442, 43oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
4538, 41, 443eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
4613adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Grp)
473, 17, 39, 46, 29, 31psraddcl 21062 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
483, 15, 16, 17, 35, 28, 25, 47psrvsca 21070 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)))
49213adant3r3 1182 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
503, 15, 16, 17, 33, 25, 31psrvscacl 21072 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
513, 17, 34, 39, 49, 50psradd 21061 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
5245, 48, 513eqtr4d 2788 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)))
53 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
54 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
553, 15, 16, 17, 35, 28, 53, 54psrvsca 21070 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
56 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑅))
573, 15, 16, 17, 35, 28, 56, 54psrvsca 21070 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧))
5855, 57oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
5923a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
603, 16, 28, 17, 54psrelbas 21058 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6153, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
62 fconst6g 6647 . . . . . 6 (𝑦 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6356, 62syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
645adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
6516, 34, 35ringdir 19721 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6664, 65sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6759, 60, 61, 63, 66caofdir 7551 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
6859, 53, 56ofc12 7539 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}))
6968oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
7058, 67, 693eqtr2rd 2785 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7116, 34ringacl 19732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7264, 53, 56, 71syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
733, 15, 16, 17, 35, 28, 72, 54psrvsca 21070 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
743, 15, 16, 17, 64, 53, 54psrvscacl 21072 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
753, 15, 16, 17, 64, 56, 54psrvscacl 21072 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
763, 17, 34, 39, 74, 75psradd 21061 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7770, 73, 763eqtr4d 2788 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)))
7857oveq2d 7271 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
7916, 35ringass 19718 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8064, 79sylan 579 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8159, 61, 63, 60, 80caofass 7548 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
8259, 53, 56ofc12 7539 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}))
8382oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
8478, 81, 833eqtr2rd 2785 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8516, 35ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
8664, 53, 56, 85syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
873, 15, 16, 17, 35, 28, 86, 54psrvsca 21070 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
883, 15, 16, 17, 35, 28, 53, 75psrvsca 21070 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8984, 87, 883eqtr4d 2788 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)))
905adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
91 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
9216, 91ringidcl 19722 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
9390, 92syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
94 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
953, 15, 16, 17, 35, 28, 93, 94psrvsca 21070 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥))
9623a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
973, 16, 28, 17, 94psrelbas 21058 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
9816, 35, 91ringlidm 19725 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
9990, 98sylan 579 . . . 4 (((𝜑𝑥 ∈ (Base‘𝑆)) ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
10096, 97, 93, 99caofid0l 7542 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥) = 𝑥)
10195, 100eqtrd 2778 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = 𝑥)
1021, 2, 6, 7, 8, 9, 10, 11, 5, 14, 21, 52, 77, 89, 101islmodd 20044 1 (𝜑𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  {csn 4558   × cxp 5578  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  cn 11903  0cn0 12163  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   ·𝑠 cvsca 16892  Grpcgrp 18492  1rcur 19652  Ringcrg 19698  LModclmod 20038   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-psr 21022
This theorem is referenced by:  psrassa  21093  mpllmod  21133  mplbas2  21153  opsrlmod  21327
  Copyright terms: Public domain W3C validator