Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. 2
β’ (π β (Baseβπ) = (Baseβπ)) |
2 | | eqidd 2733 |
. 2
β’ (π β (+gβπ) = (+gβπ)) |
3 | | psrring.s |
. . 3
β’ π = (πΌ mPwSer π
) |
4 | | psrring.i |
. . 3
β’ (π β πΌ β π) |
5 | | psrring.r |
. . 3
β’ (π β π
β Ring) |
6 | 3, 4, 5 | psrsca 21499 |
. 2
β’ (π β π
= (Scalarβπ)) |
7 | | eqidd 2733 |
. 2
β’ (π β (
Β·π βπ) = ( Β·π
βπ)) |
8 | | eqidd 2733 |
. 2
β’ (π β (Baseβπ
) = (Baseβπ
)) |
9 | | eqidd 2733 |
. 2
β’ (π β (+gβπ
) = (+gβπ
)) |
10 | | eqidd 2733 |
. 2
β’ (π β (.rβπ
) = (.rβπ
)) |
11 | | eqidd 2733 |
. 2
β’ (π β (1rβπ
) = (1rβπ
)) |
12 | | ringgrp 20054 |
. . . 4
β’ (π
β Ring β π
β Grp) |
13 | 5, 12 | syl 17 |
. . 3
β’ (π β π
β Grp) |
14 | 3, 4, 13 | psrgrp 21508 |
. 2
β’ (π β π β Grp) |
15 | | eqid 2732 |
. . 3
β’ (
Β·π βπ) = ( Β·π
βπ) |
16 | | eqid 2732 |
. . 3
β’
(Baseβπ
) =
(Baseβπ
) |
17 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
18 | 5 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ)) β π
β Ring) |
19 | | simp2 1137 |
. . 3
β’ ((π β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ)) β π₯ β (Baseβπ
)) |
20 | | simp3 1138 |
. . 3
β’ ((π β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ)) β π¦ β (Baseβπ)) |
21 | 3, 15, 16, 17, 18, 19, 20 | psrvscacl 21503 |
. 2
β’ ((π β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ)) β (π₯( Β·π
βπ)π¦) β (Baseβπ)) |
22 | | ovex 7438 |
. . . . . . 7
β’
(β0 βm πΌ) β V |
23 | 22 | rabex 5331 |
. . . . . 6
β’ {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β
V |
24 | 23 | a1i 11 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β
V) |
25 | | simpr1 1194 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ
)) |
26 | | fconst6g 6777 |
. . . . . 6
β’ (π₯ β (Baseβπ
) β ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
27 | 25, 26 | syl 17 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
28 | | eqid 2732 |
. . . . . 6
β’ {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
29 | | simpr2 1195 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ)) |
30 | 3, 16, 28, 17, 29 | psrelbas 21489 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦:{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
31 | | simpr3 1196 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
32 | 3, 16, 28, 17, 31 | psrelbas 21489 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§:{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
33 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
β Ring) |
34 | | eqid 2732 |
. . . . . . 7
β’
(+gβπ
) = (+gβπ
) |
35 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
36 | 16, 34, 35 | ringdi 20074 |
. . . . . 6
β’ ((π
β Ring β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β (π(.rβπ
)(π (+gβπ
)π‘)) = ((π(.rβπ
)π )(+gβπ
)(π(.rβπ
)π‘))) |
37 | 33, 36 | sylan 580 |
. . . . 5
β’ (((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β (π(.rβπ
)(π (+gβπ
)π‘)) = ((π(.rβπ
)π )(+gβπ
)(π(.rβπ
)π‘))) |
38 | 24, 27, 30, 32, 37 | caofdi 7705 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦ βf
(+gβπ
)π§)) = ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π¦) βf
(+gβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§))) |
39 | | eqid 2732 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
40 | 3, 17, 34, 39, 29, 31 | psradd 21492 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(+gβπ)π§) = (π¦ βf
(+gβπ
)π§)) |
41 | 40 | oveq2d 7421 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦(+gβπ)π§)) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦ βf
(+gβπ
)π§))) |
42 | 3, 15, 16, 17, 35, 28, 25, 29 | psrvsca 21501 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π¦) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π¦)) |
43 | 3, 15, 16, 17, 35, 28, 25, 31 | psrvsca 21501 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§)) |
44 | 42, 43 | oveq12d 7423 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π¦) βf
(+gβπ
)(π₯( Β·π
βπ)π§)) = ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π¦) βf
(+gβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§))) |
45 | 38, 41, 44 | 3eqtr4d 2782 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦(+gβπ)π§)) = ((π₯( Β·π
βπ)π¦) βf
(+gβπ
)(π₯( Β·π
βπ)π§))) |
46 | 13 | adantr 481 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
β Grp) |
47 | 3, 17, 39, 46, 29, 31 | psraddcl 21493 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(+gβπ)π§) β (Baseβπ)) |
48 | 3, 15, 16, 17, 35, 28, 25, 47 | psrvsca 21501 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)(π¦(+gβπ)π§)) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦(+gβπ)π§))) |
49 | 21 | 3adant3r3 1184 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π¦) β (Baseβπ)) |
50 | 3, 15, 16, 17, 33, 25, 31 | psrvscacl 21503 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π§) β (Baseβπ)) |
51 | 3, 17, 34, 39, 49, 50 | psradd 21492 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π¦)(+gβπ)(π₯( Β·π
βπ)π§)) = ((π₯( Β·π
βπ)π¦) βf
(+gβπ
)(π₯( Β·π
βπ)π§))) |
52 | 45, 48, 51 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)(π¦(+gβπ)π§)) = ((π₯( Β·π
βπ)π¦)(+gβπ)(π₯( Β·π
βπ)π§))) |
53 | | simpr1 1194 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ
)) |
54 | | simpr3 1196 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
55 | 3, 15, 16, 17, 35, 28, 53, 54 | psrvsca 21501 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§)) |
56 | | simpr2 1195 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ
)) |
57 | 3, 15, 16, 17, 35, 28, 56, 54 | psrvsca 21501 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π¦( Β·π
βπ)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}) βf
(.rβπ
)π§)) |
58 | 55, 57 | oveq12d 7423 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π§) βf
(+gβπ
)(π¦( Β·π
βπ)π§)) = ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§) βf
(+gβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}) βf
(.rβπ
)π§))) |
59 | 23 | a1i 11 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β
V) |
60 | 3, 16, 28, 17, 54 | psrelbas 21489 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β π§:{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
61 | 53, 26 | syl 17 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
62 | | fconst6g 6777 |
. . . . . 6
β’ (π¦ β (Baseβπ
) β ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
63 | 56, 62 | syl 17 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}):{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
64 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β π
β Ring) |
65 | 16, 34, 35 | ringdir 20075 |
. . . . . 6
β’ ((π
β Ring β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β ((π(+gβπ
)π )(.rβπ
)π‘) = ((π(.rβπ
)π‘)(+gβπ
)(π (.rβπ
)π‘))) |
66 | 64, 65 | sylan 580 |
. . . . 5
β’ (((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β ((π(+gβπ
)π )(.rβπ
)π‘) = ((π(.rβπ
)π‘)(+gβπ
)(π (.rβπ
)π‘))) |
67 | 59, 60, 61, 63, 66 | caofdir 7706 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(+gβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) βf
(.rβπ
)π§) = ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)π§) βf
(+gβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}) βf
(.rβπ
)π§))) |
68 | 59, 53, 56 | ofc12 7694 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(+gβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) = ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(+gβπ
)π¦)})) |
69 | 68 | oveq1d 7420 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(+gβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) βf
(.rβπ
)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(+gβπ
)π¦)}) βf
(.rβπ
)π§)) |
70 | 58, 67, 69 | 3eqtr2rd 2779 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(+gβπ
)π¦)}) βf
(.rβπ
)π§) = ((π₯( Β·π
βπ)π§) βf
(+gβπ
)(π¦( Β·π
βπ)π§))) |
71 | 16, 34 | ringacl 20088 |
. . . . 5
β’ ((π
β Ring β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β (π₯(+gβπ
)π¦) β (Baseβπ
)) |
72 | 64, 53, 56, 71 | syl3anc 1371 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π₯(+gβπ
)π¦) β (Baseβπ
)) |
73 | 3, 15, 16, 17, 35, 28, 72, 54 | psrvsca 21501 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯(+gβπ
)π¦)( Β·π
βπ)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(+gβπ
)π¦)}) βf
(.rβπ
)π§)) |
74 | 3, 15, 16, 17, 64, 53, 54 | psrvscacl 21503 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π§) β (Baseβπ)) |
75 | 3, 15, 16, 17, 64, 56, 54 | psrvscacl 21503 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π¦( Β·π
βπ)π§) β (Baseβπ)) |
76 | 3, 17, 34, 39, 74, 75 | psradd 21492 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π§)(+gβπ)(π¦( Β·π
βπ)π§)) = ((π₯( Β·π
βπ)π§) βf
(+gβπ
)(π¦( Β·π
βπ)π§))) |
77 | 70, 73, 76 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯(+gβπ
)π¦)( Β·π
βπ)π§) = ((π₯( Β·π
βπ)π§)(+gβπ)(π¦( Β·π
βπ)π§))) |
78 | 57 | oveq2d 7421 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦( Β·π
βπ)π§)) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}) βf
(.rβπ
)π§))) |
79 | 16, 35 | ringass 20069 |
. . . . . 6
β’ ((π
β Ring β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β ((π(.rβπ
)π )(.rβπ
)π‘) = (π(.rβπ
)(π (.rβπ
)π‘))) |
80 | 64, 79 | sylan 580 |
. . . . 5
β’ (((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π‘ β (Baseβπ
))) β ((π(.rβπ
)π )(.rβπ
)π‘) = (π(.rβπ
)(π (.rβπ
)π‘))) |
81 | 59, 61, 63, 60, 80 | caofass 7703 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) βf
(.rβπ
)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦}) βf
(.rβπ
)π§))) |
82 | 59, 53, 56 | ofc12 7694 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) = ({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(.rβπ
)π¦)})) |
83 | 82 | oveq1d 7420 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π¦})) βf
(.rβπ
)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(.rβπ
)π¦)}) βf
(.rβπ
)π§)) |
84 | 78, 81, 83 | 3eqtr2rd 2779 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(.rβπ
)π¦)}) βf
(.rβπ
)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦( Β·π
βπ)π§))) |
85 | 16, 35 | ringcl 20066 |
. . . . 5
β’ ((π
β Ring β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β (π₯(.rβπ
)π¦) β (Baseβπ
)) |
86 | 64, 53, 56, 85 | syl3anc 1371 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π₯(.rβπ
)π¦) β (Baseβπ
)) |
87 | 3, 15, 16, 17, 35, 28, 86, 54 | psrvsca 21501 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯(.rβπ
)π¦)( Β·π
βπ)π§) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {(π₯(.rβπ
)π¦)}) βf
(.rβπ
)π§)) |
88 | 3, 15, 16, 17, 35, 28, 53, 75 | psrvsca 21501 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)(π¦(
Β·π βπ)π§)) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ {π₯}) βf
(.rβπ
)(π¦( Β·π
βπ)π§))) |
89 | 84, 87, 88 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π§ β (Baseβπ))) β ((π₯(.rβπ
)π¦)( Β·π
βπ)π§) = (π₯( Β·π
βπ)(π¦(
Β·π βπ)π§))) |
90 | 5 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ)) β π
β Ring) |
91 | | eqid 2732 |
. . . . . 6
β’
(1rβπ
) = (1rβπ
) |
92 | 16, 91 | ringidcl 20076 |
. . . . 5
β’ (π
β Ring β
(1rβπ
)
β (Baseβπ
)) |
93 | 90, 92 | syl 17 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ)) β (1rβπ
) β (Baseβπ
)) |
94 | | simpr 485 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ)) β π₯ β (Baseβπ)) |
95 | 3, 15, 16, 17, 35, 28, 93, 94 | psrvsca 21501 |
. . 3
β’ ((π β§ π₯ β (Baseβπ)) β ((1rβπ
)(
Β·π βπ)π₯) = (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ
{(1rβπ
)})
βf (.rβπ
)π₯)) |
96 | 23 | a1i 11 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ)) β {π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} β
V) |
97 | 3, 16, 28, 17, 94 | psrelbas 21489 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ)) β π₯:{π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin}βΆ(Baseβπ
)) |
98 | 16, 35, 91 | ringlidm 20079 |
. . . . 5
β’ ((π
β Ring β§ π β (Baseβπ
)) β
((1rβπ
)(.rβπ
)π) = π) |
99 | 90, 98 | sylan 580 |
. . . 4
β’ (((π β§ π₯ β (Baseβπ)) β§ π β (Baseβπ
)) β ((1rβπ
)(.rβπ
)π) = π) |
100 | 96, 97, 93, 99 | caofid0l 7697 |
. . 3
β’ ((π β§ π₯ β (Baseβπ)) β (({π β (β0
βm πΌ)
β£ (β‘π β β) β Fin} Γ
{(1rβπ
)})
βf (.rβπ
)π₯) = π₯) |
101 | 95, 100 | eqtrd 2772 |
. 2
β’ ((π β§ π₯ β (Baseβπ)) β ((1rβπ
)(
Β·π βπ)π₯) = π₯) |
102 | 1, 2, 6, 7, 8, 9, 10, 11, 5, 14, 21, 52, 77, 89, 101 | islmodd 20469 |
1
β’ (π β π β LMod) |