MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlmod Structured version   Visualization version   GIF version

Theorem psrlmod 21885
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
psrlmod (𝜑𝑆 ∈ LMod)

Proof of Theorem psrlmod
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 eqidd 2730 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
3 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 psrring.i . . 3 (𝜑𝐼𝑉)
5 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
63, 4, 5psrsca 21872 . 2 (𝜑𝑅 = (Scalar‘𝑆))
7 eqidd 2730 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2730 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
9 eqidd 2730 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
10 eqidd 2730 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
11 eqidd 2730 . 2 (𝜑 → (1r𝑅) = (1r𝑅))
12 ringgrp 20141 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
135, 12syl 17 . . 3 (𝜑𝑅 ∈ Grp)
143, 4, 13psrgrp 21881 . 2 (𝜑𝑆 ∈ Grp)
15 eqid 2729 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
1853ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
19 simp2 1137 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
20 simp3 1138 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
213, 15, 16, 17, 18, 19, 20psrvscacl 21876 . 2 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
22 ovex 7386 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2322rabex 5281 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
25 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
26 fconst6g 6717 . . . . . 6 (𝑥 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2725, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
28 eqid 2729 . . . . . 6 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
29 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
303, 16, 28, 17, 29psrelbas 21859 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
31 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
323, 16, 28, 17, 31psrelbas 21859 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
335adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
34 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
35 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
3616, 34, 35ringdi 20164 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3733, 36sylan 580 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → (𝑟(.r𝑅)(𝑠(+g𝑅)𝑡)) = ((𝑟(.r𝑅)𝑠)(+g𝑅)(𝑟(.r𝑅)𝑡)))
3824, 27, 30, 32, 37caofdi 7659 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
39 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
403, 17, 34, 39, 29, 31psradd 21862 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) = (𝑦f (+g𝑅)𝑧))
4140oveq2d 7369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦f (+g𝑅)𝑧)))
423, 15, 16, 17, 35, 28, 25, 29psrvsca 21874 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦))
433, 15, 16, 17, 35, 28, 25, 31psrvsca 21874 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
4442, 43oveq12d 7371 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑦) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧)))
4538, 41, 443eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
4613grpmgmd 18858 . . . . . 6 (𝜑𝑅 ∈ Mgm)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Mgm)
483, 17, 39, 47, 29, 31psraddcl 21863 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(+g𝑆)𝑧) ∈ (Base‘𝑆))
493, 15, 16, 17, 35, 28, 25, 48psrvsca 21874 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦(+g𝑆)𝑧)))
50213adant3r3 1185 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
513, 15, 16, 17, 33, 25, 31psrvscacl 21876 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
523, 17, 34, 39, 50, 51psradd 21862 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦) ∘f (+g𝑅)(𝑥( ·𝑠𝑆)𝑧)))
5345, 49, 523eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦(+g𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑦)(+g𝑆)(𝑥( ·𝑠𝑆)𝑧)))
54 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
55 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
563, 15, 16, 17, 35, 28, 54, 55psrvsca 21874 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧))
57 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑅))
583, 15, 16, 17, 35, 28, 57, 55psrvsca 21874 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧))
5956, 58oveq12d 7371 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
6023a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
613, 16, 28, 17, 55psrelbas 21859 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6254, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
63 fconst6g 6717 . . . . . 6 (𝑦 ∈ (Base‘𝑅) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6457, 63syl 17 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
655adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
6616, 34, 35ringdir 20165 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6765, 66sylan 580 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(+g𝑅)𝑠)(.r𝑅)𝑡) = ((𝑟(.r𝑅)𝑡)(+g𝑅)(𝑠(.r𝑅)𝑡)))
6860, 61, 62, 64, 67caofdir 7660 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑧) ∘f (+g𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
6960, 54, 57ofc12 7647 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}))
7069oveq1d 7368 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (+g𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
7159, 68, 703eqtr2rd 2771 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7216, 34ringacl 20181 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7365, 54, 57, 72syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
743, 15, 16, 17, 35, 28, 73, 55psrvsca 21874 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(+g𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
753, 15, 16, 17, 65, 54, 55psrvscacl 21876 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
763, 15, 16, 17, 65, 57, 55psrvscacl 21876 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦( ·𝑠𝑆)𝑧) ∈ (Base‘𝑆))
773, 17, 34, 39, 75, 76psradd 21862 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)) = ((𝑥( ·𝑠𝑆)𝑧) ∘f (+g𝑅)(𝑦( ·𝑠𝑆)𝑧)))
7871, 74, 773eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(+g𝑅)𝑦)( ·𝑠𝑆)𝑧) = ((𝑥( ·𝑠𝑆)𝑧)(+g𝑆)(𝑦( ·𝑠𝑆)𝑧)))
7958oveq2d 7369 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
8016, 35ringass 20156 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8165, 80sylan 580 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) ∧ (𝑟 ∈ (Base‘𝑅) ∧ 𝑠 ∈ (Base‘𝑅) ∧ 𝑡 ∈ (Base‘𝑅))) → ((𝑟(.r𝑅)𝑠)(.r𝑅)𝑡) = (𝑟(.r𝑅)(𝑠(.r𝑅)𝑡)))
8260, 62, 64, 61, 81caofass 7657 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦}) ∘f (.r𝑅)𝑧)))
8360, 54, 57ofc12 7647 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) = ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}))
8483oveq1d 7368 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑦})) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
8579, 82, 843eqtr2rd 2771 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
8616, 35ringcl 20153 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
8765, 54, 57, 86syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
883, 15, 16, 17, 35, 28, 87, 55psrvsca 21874 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(𝑥(.r𝑅)𝑦)}) ∘f (.r𝑅)𝑧))
893, 15, 16, 17, 35, 28, 54, 76psrvsca 21874 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)(𝑦( ·𝑠𝑆)𝑧)))
9085, 88, 893eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥(.r𝑅)𝑦)( ·𝑠𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦( ·𝑠𝑆)𝑧)))
915adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
92 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
9316, 92ringidcl 20168 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
9491, 93syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → (1r𝑅) ∈ (Base‘𝑅))
95 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
963, 15, 16, 17, 35, 28, 94, 95psrvsca 21874 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥))
9723a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
983, 16, 28, 17, 95psrelbas 21859 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
9916, 35, 92ringlidm 20172 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
10091, 99sylan 580 . . . 4 (((𝜑𝑥 ∈ (Base‘𝑆)) ∧ 𝑟 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑟) = 𝑟)
10197, 98, 94, 100caofid0l 7650 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(1r𝑅)}) ∘f (.r𝑅)𝑥) = 𝑥)
10296, 101eqtrd 2764 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((1r𝑅)( ·𝑠𝑆)𝑥) = 𝑥)
1031, 2, 6, 7, 8, 9, 10, 11, 5, 14, 21, 53, 78, 90, 102islmodd 20787 1 (𝜑𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  {csn 4579   × cxp 5621  ccnv 5622  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  +gcplusg 17179  .rcmulr 17180   ·𝑠 cvsca 17183  Mgmcmgm 18530  Grpcgrp 18830  1rcur 20084  Ringcrg 20136  LModclmod 20781   mPwSer cmps 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-psr 21834
This theorem is referenced by:  psrassa  21898  psrasclcl  21905  mpllmod  21943  mplbas2  21965  psdascl  22071  opsrlmod  22146
  Copyright terms: Public domain W3C validator