MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdi Structured version   Visualization version   GIF version

Theorem psrdi 20644
Description: Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdi (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdi
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2798 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
6 psrass.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
71, 2, 3, 4, 5, 6psradd 20620 . . . . . . . . . . . 12 (𝜑 → (𝑌 + 𝑍) = (𝑌f (+g𝑅)𝑍))
87fveq1d 6647 . . . . . . . . . . 11 (𝜑 → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)))
98ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)))
10 ssrab2 4007 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 psrring.i . . . . . . . . . . . . . 14 (𝜑𝐼𝑉)
1211ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑉)
13 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
14 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
15 psrass.d . . . . . . . . . . . . . 14 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 eqid 2798 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
1715, 16psrbagconcl 20611 . . . . . . . . . . . . 13 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
1812, 13, 14, 17syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
1910, 18sseldi 3913 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
20 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
211, 20, 15, 2, 5psrelbas 20617 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2221ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2322ffnd 6488 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
241, 20, 15, 2, 6psrelbas 20617 . . . . . . . . . . . . . 14 (𝜑𝑍:𝐷⟶(Base‘𝑅))
2524ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
2625ffnd 6488 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍 Fn 𝐷)
27 ovex 7168 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2815, 27rabex2 5201 . . . . . . . . . . . . 13 𝐷 ∈ V
2928a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
30 inidm 4145 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
31 eqidd 2799 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → (𝑌‘(𝑘f𝑥)) = (𝑌‘(𝑘f𝑥)))
32 eqidd 2799 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → (𝑍‘(𝑘f𝑥)) = (𝑍‘(𝑘f𝑥)))
3323, 26, 29, 29, 30, 31, 32ofval 7398 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
3419, 33mpdan 686 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
359, 34eqtrd 2833 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
3635oveq2d 7151 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))))
37 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3837ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
39 psrass.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
401, 20, 15, 2, 39psrelbas 20617 . . . . . . . . . . 11 (𝜑𝑋:𝐷⟶(Base‘𝑅))
4140ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
4210, 14sseldi 3913 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
4341, 42ffvelrnd 6829 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
4422, 19ffvelrnd 6829 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
4525, 19ffvelrnd 6829 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
46 eqid 2798 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4720, 3, 46ringdi 19312 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4838, 43, 44, 45, 47syl13anc 1369 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4936, 48eqtrd 2833 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5049mpteq2dva 5125 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5115psrbaglefi 20610 . . . . . . . 8 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5211, 51sylan 583 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5320, 46ringcl 19307 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5438, 43, 44, 53syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5520, 46ringcl 19307 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5638, 43, 45, 55syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
57 eqidd 2799 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
58 eqidd 2799 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5952, 54, 56, 57, 58offval2 7406 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
6050, 59eqtr4d 2836 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
6160oveq2d 7151 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6237adantr 484 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
63 ringcmn 19327 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6462, 63syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
65 eqid 2798 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
66 eqid 2798 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6720, 3, 64, 52, 54, 56, 65, 66gsummptfidmadd2 19039 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6861, 67eqtrd 2833 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6968mpteq2dva 5125 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
70 psrass.t . . 3 × = (.r𝑆)
71 ringgrp 19295 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7237, 71syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
731, 2, 4, 72, 5, 6psraddcl 20621 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ 𝐵)
741, 2, 46, 70, 15, 39, 73psrmulfval 20623 . 2 (𝜑 → (𝑋 × (𝑌 + 𝑍)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))))))
751, 2, 70, 37, 39, 5psrmulcl 20626 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
761, 2, 70, 37, 39, 6psrmulcl 20626 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
771, 2, 3, 4, 75, 76psradd 20620 . . 3 (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = ((𝑋 × 𝑌) ∘f (+g𝑅)(𝑋 × 𝑍)))
7828a1i 11 . . . 4 (𝜑𝐷 ∈ V)
79 ovexd 7170 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
80 ovexd 7170 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
811, 2, 46, 70, 15, 39, 5psrmulfval 20623 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
821, 2, 46, 70, 15, 39, 6psrmulfval 20623 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8378, 79, 80, 81, 82offval2 7406 . . 3 (𝜑 → ((𝑋 × 𝑌) ∘f (+g𝑅)(𝑋 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8477, 83eqtrd 2833 . 2 (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8569, 74, 843eqtr4d 2843 1 (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  r cofr 7388  m cmap 8389  Fincfn 8492  cle 10665  cmin 10859  cn 11625  0cn0 11885  Basecbs 16475  +gcplusg 16557  .rcmulr 16558   Σg cgsu 16706  Grpcgrp 18095  CMndccmn 18898  Ringcrg 19290   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-psr 20594
This theorem is referenced by:  psrring  20649
  Copyright terms: Public domain W3C validator