MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdi Structured version   Visualization version   GIF version

Theorem psrdi 21903
Description: Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdi (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdi
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2733 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
6 psrass.z . . . . . . . . . . . . 13 (𝜑𝑍𝐵)
71, 2, 3, 4, 5, 6psradd 21876 . . . . . . . . . . . 12 (𝜑 → (𝑌 + 𝑍) = (𝑌f (+g𝑅)𝑍))
87fveq1d 6830 . . . . . . . . . . 11 (𝜑 → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)))
98ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)))
10 ssrab2 4029 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 psrass.d . . . . . . . . . . . . . 14 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 eqid 2733 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
1311, 12psrbagconcl 21866 . . . . . . . . . . . . 13 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
1413adantll 714 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
1510, 14sselid 3928 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
16 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
171, 16, 11, 2, 5psrelbas 21873 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1817ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
1918ffnd 6657 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
201, 16, 11, 2, 6psrelbas 21873 . . . . . . . . . . . . . 14 (𝜑𝑍:𝐷⟶(Base‘𝑅))
2120ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
2221ffnd 6657 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍 Fn 𝐷)
23 ovex 7385 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2411, 23rabex2 5281 . . . . . . . . . . . . 13 𝐷 ∈ V
2524a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
26 inidm 4176 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
27 eqidd 2734 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → (𝑌‘(𝑘f𝑥)) = (𝑌‘(𝑘f𝑥)))
28 eqidd 2734 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → (𝑍‘(𝑘f𝑥)) = (𝑍‘(𝑘f𝑥)))
2919, 22, 25, 25, 26, 27, 28ofval 7627 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ 𝐷) → ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
3015, 29mpdan 687 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌f (+g𝑅)𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
319, 30eqtrd 2768 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌 + 𝑍)‘(𝑘f𝑥)) = ((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥))))
3231oveq2d 7368 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))))
33 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3433ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
35 psrass.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
361, 16, 11, 2, 35psrelbas 21873 . . . . . . . . . . 11 (𝜑𝑋:𝐷⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
38 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
3910, 38sselid 3928 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
4037, 39ffvelcdmd 7024 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
4118, 15ffvelcdmd 7024 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
4221, 15ffvelcdmd 7024 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
43 eqid 2733 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4416, 3, 43ringdi 20181 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4534, 40, 41, 42, 44syl13anc 1374 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌‘(𝑘f𝑥))(+g𝑅)(𝑍‘(𝑘f𝑥)))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 45eqtrd 2768 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4746mpteq2dva 5186 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4811psrbaglefi 21865 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
4948adantl 481 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5016, 43, 34, 40, 41ringcld 20180 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5116, 43, 34, 40, 42ringcld 20180 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
52 eqidd 2734 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
53 eqidd 2734 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5449, 50, 51, 52, 53offval2 7636 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))(+g𝑅)((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5547, 54eqtr4d 2771 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5655oveq2d 7368 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
5733adantr 480 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
5857ringcmnd 20204 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
59 eqid 2733 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
60 eqid 2733 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6116, 3, 58, 49, 50, 51, 59, 60gsummptfidmadd2 19840 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6256, 61eqtrd 2768 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6362mpteq2dva 5186 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
64 psrass.t . . 3 × = (.r𝑆)
6533ringgrpd 20162 . . . . 5 (𝜑𝑅 ∈ Grp)
6665grpmgmd 18876 . . . 4 (𝜑𝑅 ∈ Mgm)
671, 2, 4, 66, 5, 6psraddcl 21877 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ 𝐵)
681, 2, 43, 64, 11, 35, 67psrmulfval 21882 . 2 (𝜑 → (𝑋 × (𝑌 + 𝑍)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝑌 + 𝑍)‘(𝑘f𝑥)))))))
691, 2, 64, 33, 35, 5psrmulcl 21885 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
701, 2, 64, 33, 35, 6psrmulcl 21885 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
711, 2, 3, 4, 69, 70psradd 21876 . . 3 (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = ((𝑋 × 𝑌) ∘f (+g𝑅)(𝑋 × 𝑍)))
7224a1i 11 . . . 4 (𝜑𝐷 ∈ V)
73 ovexd 7387 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
74 ovexd 7387 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
751, 2, 43, 64, 11, 35, 5psrmulfval 21882 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
761, 2, 43, 64, 11, 35, 6psrmulfval 21882 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
7772, 73, 74, 75, 76offval2 7636 . . 3 (𝜑 → ((𝑋 × 𝑌) ∘f (+g𝑅)(𝑋 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
7871, 77eqtrd 2768 . 2 (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
7963, 68, 783eqtr4d 2778 1 (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  ccnv 5618  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615  m cmap 8756  Fincfn 8875  cle 11154  cmin 11351  cn 12132  0cn0 12388  Basecbs 17122  +gcplusg 17163  .rcmulr 17164   Σg cgsu 17346  Ringcrg 20153   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-ur 20102  df-ring 20155  df-psr 21848
This theorem is referenced by:  psrring  21908
  Copyright terms: Public domain W3C validator