Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psrass.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
3 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | psrdi.a |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑆) |
5 | | psrass.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
6 | | psrass.z |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
7 | 1, 2, 3, 4, 5, 6 | psradd 21980 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌 + 𝑍) = (𝑌 ∘f
(+g‘𝑅)𝑍)) |
8 | 7 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)) = ((𝑌 ∘f
(+g‘𝑅)𝑍)‘(𝑘 ∘f − 𝑥))) |
9 | 8 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)) = ((𝑌 ∘f
(+g‘𝑅)𝑍)‘(𝑘 ∘f − 𝑥))) |
10 | | ssrab2 4103 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ⊆ 𝐷 |
11 | | psrass.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
12 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
13 | 11, 12 | psrbagconcl 21970 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
14 | 13 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
15 | 10, 14 | sselid 4006 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ 𝐷) |
16 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 1, 16, 11, 2, 5 | psrelbas 21977 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
18 | 17 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
19 | 18 | ffnd 6748 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌 Fn 𝐷) |
20 | 1, 16, 11, 2, 6 | psrelbas 21977 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍:𝐷⟶(Base‘𝑅)) |
21 | 20 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑍:𝐷⟶(Base‘𝑅)) |
22 | 21 | ffnd 6748 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑍 Fn 𝐷) |
23 | | ovex 7481 |
. . . . . . . . . . . . . 14
⊢
(ℕ0 ↑m 𝐼) ∈ V |
24 | 11, 23 | rabex2 5359 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ V |
25 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝐷 ∈ V) |
26 | | inidm 4248 |
. . . . . . . . . . . 12
⊢ (𝐷 ∩ 𝐷) = 𝐷 |
27 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) ∧ (𝑘 ∘f − 𝑥) ∈ 𝐷) → (𝑌‘(𝑘 ∘f − 𝑥)) = (𝑌‘(𝑘 ∘f − 𝑥))) |
28 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) ∧ (𝑘 ∘f − 𝑥) ∈ 𝐷) → (𝑍‘(𝑘 ∘f − 𝑥)) = (𝑍‘(𝑘 ∘f − 𝑥))) |
29 | 19, 22, 25, 25, 26, 27, 28 | ofval 7725 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) ∧ (𝑘 ∘f − 𝑥) ∈ 𝐷) → ((𝑌 ∘f
(+g‘𝑅)𝑍)‘(𝑘 ∘f − 𝑥)) = ((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) |
30 | 15, 29 | mpdan 686 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑌 ∘f
(+g‘𝑅)𝑍)‘(𝑘 ∘f − 𝑥)) = ((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) |
31 | 9, 30 | eqtrd 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)) = ((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) |
32 | 31 | oveq2d 7464 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥))) = ((𝑋‘𝑥)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) |
33 | | psrring.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
34 | 33 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
35 | | psrass.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
36 | 1, 16, 11, 2, 35 | psrelbas 21977 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
37 | 36 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
38 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
39 | 10, 38 | sselid 4006 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
40 | 37, 39 | ffvelcdmd 7119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
41 | 18, 15 | ffvelcdmd 7119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
42 | 21, 15 | ffvelcdmd 7119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑍‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
43 | | eqid 2740 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
44 | 16, 3, 43 | ringdi 20287 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((𝑋‘𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅))) → ((𝑋‘𝑥)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))(+g‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) |
45 | 34, 40, 41, 42, 44 | syl13anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑥))(+g‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))(+g‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) |
46 | 32, 45 | eqtrd 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))(+g‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) |
47 | 46 | mpteq2dva 5266 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))(+g‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))) |
48 | 11 | psrbaglefi 21969 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
50 | 16, 43, 34, 40, 41 | ringcld 20286 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
51 | 16, 43, 34, 40, 42 | ringcld 20286 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
52 | | eqidd 2741 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
53 | | eqidd 2741 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) |
54 | 49, 50, 51, 52, 53 | offval2 7734 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∘f
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))(+g‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))) |
55 | 47, 54 | eqtr4d 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)))) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∘f
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))) |
56 | 55 | oveq2d 7464 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∘f
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))))) |
57 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
58 | 57 | ringcmnd 20307 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
59 | | eqid 2740 |
. . . . 5
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
60 | | eqid 2740 |
. . . . 5
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))) |
61 | 16, 3, 58, 49, 50, 51, 59, 60 | gsummptfidmadd2 19968 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∘f
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))))) |
62 | 56, 61 | eqtrd 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))))) |
63 | 62 | mpteq2dva 5266 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))))) |
64 | | psrass.t |
. . 3
⊢ × =
(.r‘𝑆) |
65 | 33 | ringgrpd 20269 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
66 | 65 | grpmgmd 19001 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mgm) |
67 | 1, 2, 4, 66, 5, 6 | psraddcl 21981 |
. . 3
⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝐵) |
68 | 1, 2, 43, 64, 11, 35, 67 | psrmulfval 21986 |
. 2
⊢ (𝜑 → (𝑋 × (𝑌 + 𝑍)) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝑌 + 𝑍)‘(𝑘 ∘f − 𝑥))))))) |
69 | 1, 2, 64, 33, 35, 5 | psrmulcl 21989 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) ∈ 𝐵) |
70 | 1, 2, 64, 33, 35, 6 | psrmulcl 21989 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) ∈ 𝐵) |
71 | 1, 2, 3, 4, 69, 70 | psradd 21980 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = ((𝑋 × 𝑌) ∘f
(+g‘𝑅)(𝑋 × 𝑍))) |
72 | 24 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
73 | | ovexd 7483 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ V) |
74 | | ovexd 7483 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))) ∈ V) |
75 | 1, 2, 43, 64, 11, 35, 5 | psrmulfval 21986 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
76 | 1, 2, 43, 64, 11, 35, 6 | psrmulfval 21986 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥))))))) |
77 | 72, 73, 74, 75, 76 | offval2 7734 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑌) ∘f
(+g‘𝑅)(𝑋 × 𝑍)) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))))) |
78 | 71, 77 | eqtrd 2780 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑌) + (𝑋 × 𝑍)) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘f − 𝑥)))))))) |
79 | 63, 68, 78 | 3eqtr4d 2790 |
1
⊢ (𝜑 → (𝑋 × (𝑌 + 𝑍)) = ((𝑋 × 𝑌) + (𝑋 × 𝑍))) |