MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdir Structured version   Visualization version   GIF version

Theorem psrdir 21865
Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdir (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdir
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2726 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
6 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21838 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
87fveq1d 6886 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
98ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
10 ssrab2 4072 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1210, 11sselid 3975 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
13 eqid 2726 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
14 psrass.d . . . . . . . . . . . . . . 15 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
151, 13, 14, 2, 5psrelbas 21835 . . . . . . . . . . . . . 14 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6711 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋 Fn 𝐷)
181, 13, 14, 2, 6psrelbas 21835 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1918ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2019ffnd 6711 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
21 ovex 7437 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2214, 21rabex2 5327 . . . . . . . . . . . . 13 𝐷 ∈ V
2322a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
24 inidm 4213 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
25 eqidd 2727 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑋𝑥) = (𝑋𝑥))
26 eqidd 2727 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑌𝑥) = (𝑌𝑥))
2717, 20, 23, 23, 24, 25, 26ofval 7677 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
2812, 27mpdan 684 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
299, 28eqtrd 2766 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
3029oveq1d 7419 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))))
31 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3231ad2antrr 723 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3316, 12ffvelcdmd 7080 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
3419, 12ffvelcdmd 7080 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌𝑥) ∈ (Base‘𝑅))
35 psrass.z . . . . . . . . . . . 12 (𝜑𝑍𝐵)
361, 13, 14, 2, 35psrelbas 21835 . . . . . . . . . . 11 (𝜑𝑍:𝐷⟶(Base‘𝑅))
3736ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
38 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
39 eqid 2726 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
4014, 39psrbagconcl 21824 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4138, 11, 40syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4210, 41sselid 3975 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
4337, 42ffvelcdmd 7080 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
44 eqid 2726 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4513, 3, 44ringdir 20162 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 33, 34, 43, 45syl13anc 1369 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4730, 46eqtrd 2766 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4847mpteq2dva 5241 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4914psrbaglefi 21822 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5049adantl 481 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5113, 44ringcl 20153 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5232, 33, 43, 51syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5313, 44ringcl 20153 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5432, 34, 43, 53syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
55 eqidd 2727 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
56 eqidd 2727 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5750, 52, 54, 55, 56offval2 7686 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5848, 57eqtr4d 2769 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5958oveq2d 7420 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6031adantr 480 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
61 ringcmn 20179 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6260, 61syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
63 eqid 2726 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
64 eqid 2726 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6513, 3, 62, 50, 52, 54, 63, 64gsummptfidmadd2 19844 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6659, 65eqtrd 2766 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6766mpteq2dva 5241 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
68 psrass.t . . 3 × = (.r𝑆)
6931ringgrpd 20145 . . . . 5 (𝜑𝑅 ∈ Grp)
7069grpmgmd 18889 . . . 4 (𝜑𝑅 ∈ Mgm)
711, 2, 4, 70, 5, 6psraddcl 21839 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
721, 2, 44, 68, 14, 71, 35psrmulfval 21842 . 2 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
731, 2, 68, 31, 5, 35psrmulcl 21845 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
741, 2, 68, 31, 6, 35psrmulcl 21845 . . . 4 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
751, 2, 3, 4, 73, 74psradd 21838 . . 3 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)))
7622a1i 11 . . . 4 (𝜑𝐷 ∈ V)
77 ovexd 7439 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
78 ovexd 7439 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
791, 2, 44, 68, 14, 5, 35psrmulfval 21842 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
801, 2, 44, 68, 14, 6, 35psrmulfval 21842 . . . 4 (𝜑 → (𝑌 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8176, 77, 78, 79, 80offval2 7686 . . 3 (𝜑 → ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8275, 81eqtrd 2766 . 2 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8367, 72, 823eqtr4d 2776 1 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468   class class class wbr 5141  cmpt 5224  ccnv 5668  cima 5672  wf 6532  cfv 6536  (class class class)co 7404  f cof 7664  r cofr 7665  m cmap 8819  Fincfn 8938  cle 11250  cmin 11445  cn 12213  0cn0 12473  Basecbs 17151  +gcplusg 17204  .rcmulr 17205   Σg cgsu 17393  CMndccmn 19698  Ringcrg 20136   mPwSer cmps 21794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14294  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-tset 17223  df-0g 17394  df-gsum 17395  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-cntz 19231  df-cmn 19700  df-abl 19701  df-mgp 20038  df-ur 20085  df-ring 20138  df-psr 21799
This theorem is referenced by:  psrring  21869
  Copyright terms: Public domain W3C validator