MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdir Structured version   Visualization version   GIF version

Theorem psrdir 21392
Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdir (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdir
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2733 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
6 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21366 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
87fveq1d 6845 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
98ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
10 ssrab2 4038 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 simpr 486 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1210, 11sselid 3943 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
13 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
14 psrass.d . . . . . . . . . . . . . . 15 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
151, 13, 14, 2, 5psrelbas 21363 . . . . . . . . . . . . . 14 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6670 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋 Fn 𝐷)
181, 13, 14, 2, 6psrelbas 21363 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1918ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2019ffnd 6670 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
21 ovex 7391 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2214, 21rabex2 5292 . . . . . . . . . . . . 13 𝐷 ∈ V
2322a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
24 inidm 4179 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
25 eqidd 2734 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑋𝑥) = (𝑋𝑥))
26 eqidd 2734 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑌𝑥) = (𝑌𝑥))
2717, 20, 23, 23, 24, 25, 26ofval 7629 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
2812, 27mpdan 686 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
299, 28eqtrd 2773 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
3029oveq1d 7373 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))))
31 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3231ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3316, 12ffvelcdmd 7037 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
3419, 12ffvelcdmd 7037 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌𝑥) ∈ (Base‘𝑅))
35 psrass.z . . . . . . . . . . . 12 (𝜑𝑍𝐵)
361, 13, 14, 2, 35psrelbas 21363 . . . . . . . . . . 11 (𝜑𝑍:𝐷⟶(Base‘𝑅))
3736ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
38 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
39 eqid 2733 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
4014, 39psrbagconcl 21352 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4138, 11, 40syl2anc 585 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4210, 41sselid 3943 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
4337, 42ffvelcdmd 7037 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
44 eqid 2733 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4513, 3, 44ringdir 19993 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 33, 34, 43, 45syl13anc 1373 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4730, 46eqtrd 2773 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4847mpteq2dva 5206 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4914psrbaglefi 21350 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5049adantl 483 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5113, 44ringcl 19986 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5232, 33, 43, 51syl3anc 1372 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5313, 44ringcl 19986 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5432, 34, 43, 53syl3anc 1372 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
55 eqidd 2734 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
56 eqidd 2734 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5750, 52, 54, 55, 56offval2 7638 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5848, 57eqtr4d 2776 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5958oveq2d 7374 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6031adantr 482 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
61 ringcmn 20008 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6260, 61syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
63 eqid 2733 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
64 eqid 2733 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6513, 3, 62, 50, 52, 54, 63, 64gsummptfidmadd2 19708 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6659, 65eqtrd 2773 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6766mpteq2dva 5206 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
68 psrass.t . . 3 × = (.r𝑆)
69 ringgrp 19974 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7031, 69syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
711, 2, 4, 70, 5, 6psraddcl 21367 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
721, 2, 44, 68, 14, 71, 35psrmulfval 21369 . 2 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
731, 2, 68, 31, 5, 35psrmulcl 21372 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
741, 2, 68, 31, 6, 35psrmulcl 21372 . . . 4 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
751, 2, 3, 4, 73, 74psradd 21366 . . 3 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)))
7622a1i 11 . . . 4 (𝜑𝐷 ∈ V)
77 ovexd 7393 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
78 ovexd 7393 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
791, 2, 44, 68, 14, 5, 35psrmulfval 21369 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
801, 2, 44, 68, 14, 6, 35psrmulfval 21369 . . . 4 (𝜑 → (𝑌 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8176, 77, 78, 79, 80offval2 7638 . . 3 (𝜑 → ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8275, 81eqtrd 2773 . 2 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8367, 72, 823eqtr4d 2783 1 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3406  Vcvv 3444   class class class wbr 5106  cmpt 5189  ccnv 5633  cima 5637  wf 6493  cfv 6497  (class class class)co 7358  f cof 7616  r cofr 7617  m cmap 8768  Fincfn 8886  cle 11195  cmin 11390  cn 12158  0cn0 12418  Basecbs 17088  +gcplusg 17138  .rcmulr 17139   Σg cgsu 17327  Grpcgrp 18753  CMndccmn 19567  Ringcrg 19969   mPwSer cmps 21322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-ofr 7619  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-seq 13913  df-hash 14237  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-tset 17157  df-0g 17328  df-gsum 17329  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-grp 18756  df-minusg 18757  df-cntz 19102  df-cmn 19569  df-abl 19570  df-mgp 19902  df-ur 19919  df-ring 19971  df-psr 21327
This theorem is referenced by:  psrring  21396
  Copyright terms: Public domain W3C validator