MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdir Structured version   Visualization version   GIF version

Theorem psrdir 21986
Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdir (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdir
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2737 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
6 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21957 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
87fveq1d 6908 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
98ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
10 ssrab2 4080 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1210, 11sselid 3981 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
13 eqid 2737 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
14 psrass.d . . . . . . . . . . . . . . 15 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
151, 13, 14, 2, 5psrelbas 21954 . . . . . . . . . . . . . 14 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6737 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋 Fn 𝐷)
181, 13, 14, 2, 6psrelbas 21954 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1918ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2019ffnd 6737 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
21 ovex 7464 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2214, 21rabex2 5341 . . . . . . . . . . . . 13 𝐷 ∈ V
2322a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
24 inidm 4227 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
25 eqidd 2738 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑋𝑥) = (𝑋𝑥))
26 eqidd 2738 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑌𝑥) = (𝑌𝑥))
2717, 20, 23, 23, 24, 25, 26ofval 7708 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
2812, 27mpdan 687 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
299, 28eqtrd 2777 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
3029oveq1d 7446 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))))
31 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3316, 12ffvelcdmd 7105 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
3419, 12ffvelcdmd 7105 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌𝑥) ∈ (Base‘𝑅))
35 psrass.z . . . . . . . . . . . 12 (𝜑𝑍𝐵)
361, 13, 14, 2, 35psrelbas 21954 . . . . . . . . . . 11 (𝜑𝑍:𝐷⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
38 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
39 eqid 2737 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
4014, 39psrbagconcl 21947 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4138, 11, 40syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4210, 41sselid 3981 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
4337, 42ffvelcdmd 7105 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
44 eqid 2737 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4513, 3, 44ringdir 20259 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 33, 34, 43, 45syl13anc 1374 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4730, 46eqtrd 2777 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4847mpteq2dva 5242 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4914psrbaglefi 21946 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5049adantl 481 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5113, 44ringcl 20247 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5232, 33, 43, 51syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5313, 44ringcl 20247 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5432, 34, 43, 53syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
55 eqidd 2738 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
56 eqidd 2738 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5750, 52, 54, 55, 56offval2 7717 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5848, 57eqtr4d 2780 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5958oveq2d 7447 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6031adantr 480 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
61 ringcmn 20279 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6260, 61syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
63 eqid 2737 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
64 eqid 2737 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6513, 3, 62, 50, 52, 54, 63, 64gsummptfidmadd2 19944 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6659, 65eqtrd 2777 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6766mpteq2dva 5242 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
68 psrass.t . . 3 × = (.r𝑆)
6931ringgrpd 20239 . . . . 5 (𝜑𝑅 ∈ Grp)
7069grpmgmd 18979 . . . 4 (𝜑𝑅 ∈ Mgm)
711, 2, 4, 70, 5, 6psraddcl 21958 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
721, 2, 44, 68, 14, 71, 35psrmulfval 21963 . 2 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
731, 2, 68, 31, 5, 35psrmulcl 21966 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
741, 2, 68, 31, 6, 35psrmulcl 21966 . . . 4 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
751, 2, 3, 4, 73, 74psradd 21957 . . 3 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)))
7622a1i 11 . . . 4 (𝜑𝐷 ∈ V)
77 ovexd 7466 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
78 ovexd 7466 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
791, 2, 44, 68, 14, 5, 35psrmulfval 21963 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
801, 2, 44, 68, 14, 6, 35psrmulfval 21963 . . . 4 (𝜑 → (𝑌 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8176, 77, 78, 79, 80offval2 7717 . . 3 (𝜑 → ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8275, 81eqtrd 2777 . 2 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8367, 72, 823eqtr4d 2787 1 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696  m cmap 8866  Fincfn 8985  cle 11296  cmin 11492  cn 12266  0cn0 12526  Basecbs 17247  +gcplusg 17297  .rcmulr 17298   Σg cgsu 17485  CMndccmn 19798  Ringcrg 20230   mPwSer cmps 21924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-psr 21929
This theorem is referenced by:  psrring  21990
  Copyright terms: Public domain W3C validator