MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdir Structured version   Visualization version   GIF version

Theorem psrdir 21933
Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdir (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdir
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2725 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
6 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21904 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
87fveq1d 6898 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
98ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
10 ssrab2 4073 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 simpr 483 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1210, 11sselid 3974 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
13 eqid 2725 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
14 psrass.d . . . . . . . . . . . . . . 15 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
151, 13, 14, 2, 5psrelbas 21901 . . . . . . . . . . . . . 14 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6724 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋 Fn 𝐷)
181, 13, 14, 2, 6psrelbas 21901 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1918ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2019ffnd 6724 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
21 ovex 7452 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2214, 21rabex2 5337 . . . . . . . . . . . . 13 𝐷 ∈ V
2322a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
24 inidm 4217 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
25 eqidd 2726 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑋𝑥) = (𝑋𝑥))
26 eqidd 2726 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑌𝑥) = (𝑌𝑥))
2717, 20, 23, 23, 24, 25, 26ofval 7696 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
2812, 27mpdan 685 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
299, 28eqtrd 2765 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
3029oveq1d 7434 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))))
31 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3231ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3316, 12ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
3419, 12ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌𝑥) ∈ (Base‘𝑅))
35 psrass.z . . . . . . . . . . . 12 (𝜑𝑍𝐵)
361, 13, 14, 2, 35psrelbas 21901 . . . . . . . . . . 11 (𝜑𝑍:𝐷⟶(Base‘𝑅))
3736ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
38 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
39 eqid 2725 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
4014, 39psrbagconcl 21889 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4138, 11, 40syl2anc 582 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4210, 41sselid 3974 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
4337, 42ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
44 eqid 2725 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4513, 3, 44ringdir 20218 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 33, 34, 43, 45syl13anc 1369 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4730, 46eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4847mpteq2dva 5249 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4914psrbaglefi 21887 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5049adantl 480 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5113, 44ringcl 20207 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5232, 33, 43, 51syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5313, 44ringcl 20207 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5432, 34, 43, 53syl3anc 1368 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
55 eqidd 2726 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
56 eqidd 2726 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5750, 52, 54, 55, 56offval2 7705 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5848, 57eqtr4d 2768 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5958oveq2d 7435 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6031adantr 479 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
61 ringcmn 20235 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6260, 61syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
63 eqid 2725 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
64 eqid 2725 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6513, 3, 62, 50, 52, 54, 63, 64gsummptfidmadd2 19898 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6659, 65eqtrd 2765 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6766mpteq2dva 5249 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
68 psrass.t . . 3 × = (.r𝑆)
6931ringgrpd 20199 . . . . 5 (𝜑𝑅 ∈ Grp)
7069grpmgmd 18931 . . . 4 (𝜑𝑅 ∈ Mgm)
711, 2, 4, 70, 5, 6psraddcl 21905 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
721, 2, 44, 68, 14, 71, 35psrmulfval 21910 . 2 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
731, 2, 68, 31, 5, 35psrmulcl 21913 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
741, 2, 68, 31, 6, 35psrmulcl 21913 . . . 4 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
751, 2, 3, 4, 73, 74psradd 21904 . . 3 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)))
7622a1i 11 . . . 4 (𝜑𝐷 ∈ V)
77 ovexd 7454 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
78 ovexd 7454 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
791, 2, 44, 68, 14, 5, 35psrmulfval 21910 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
801, 2, 44, 68, 14, 6, 35psrmulfval 21910 . . . 4 (𝜑 → (𝑌 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8176, 77, 78, 79, 80offval2 7705 . . 3 (𝜑 → ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8275, 81eqtrd 2765 . 2 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8367, 72, 823eqtr4d 2775 1 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  Vcvv 3461   class class class wbr 5149  cmpt 5232  ccnv 5677  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  m cmap 8845  Fincfn 8964  cle 11286  cmin 11481  cn 12250  0cn0 12510  Basecbs 17188  +gcplusg 17241  .rcmulr 17242   Σg cgsu 17430  CMndccmn 19752  Ringcrg 20190   mPwSer cmps 21859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14008  df-hash 14331  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-sca 17257  df-vsca 17258  df-tset 17260  df-0g 17431  df-gsum 17432  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-grp 18906  df-minusg 18907  df-cntz 19285  df-cmn 19754  df-abl 19755  df-mgp 20092  df-ur 20139  df-ring 20192  df-psr 21864
This theorem is referenced by:  psrring  21937
  Copyright terms: Public domain W3C validator