MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrdir Structured version   Visualization version   GIF version

Theorem psrdir 21882
Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
psrdi.a + = (+g𝑆)
Assertion
Ref Expression
psrdir (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrdir
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . . . . . 13 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
3 eqid 2730 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4 psrdi.a . . . . . . . . . . . . 13 + = (+g𝑆)
5 psrass.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
6 psrass.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21853 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
87fveq1d 6863 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
98ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋f (+g𝑅)𝑌)‘𝑥))
10 ssrab2 4046 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
11 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1210, 11sselid 3947 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
13 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
14 psrass.d . . . . . . . . . . . . . . 15 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
151, 13, 14, 2, 5psrelbas 21850 . . . . . . . . . . . . . 14 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6692 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋 Fn 𝐷)
181, 13, 14, 2, 6psrelbas 21850 . . . . . . . . . . . . . 14 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1918ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2019ffnd 6692 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌 Fn 𝐷)
21 ovex 7423 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
2214, 21rabex2 5299 . . . . . . . . . . . . 13 𝐷 ∈ V
2322a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
24 inidm 4193 . . . . . . . . . . . 12 (𝐷𝐷) = 𝐷
25 eqidd 2731 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑋𝑥) = (𝑋𝑥))
26 eqidd 2731 . . . . . . . . . . . 12 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → (𝑌𝑥) = (𝑌𝑥))
2717, 20, 23, 23, 24, 25, 26ofval 7667 . . . . . . . . . . 11 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥𝐷) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
2812, 27mpdan 687 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋f (+g𝑅)𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
299, 28eqtrd 2765 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋𝑥)(+g𝑅)(𝑌𝑥)))
3029oveq1d 7405 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))))
31 psrring.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3316, 12ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
3419, 12ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌𝑥) ∈ (Base‘𝑅))
35 psrass.z . . . . . . . . . . . 12 (𝜑𝑍𝐵)
361, 13, 14, 2, 35psrelbas 21850 . . . . . . . . . . 11 (𝜑𝑍:𝐷⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑍:𝐷⟶(Base‘𝑅))
38 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
39 eqid 2730 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
4014, 39psrbagconcl 21843 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4138, 11, 40syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
4210, 41sselid 3947 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
4337, 42ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))
44 eqid 2730 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
4513, 3, 44ringdir 20178 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4632, 33, 34, 43, 45syl13anc 1374 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋𝑥)(+g𝑅)(𝑌𝑥))(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4730, 46eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) = (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
4847mpteq2dva 5203 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
4914psrbaglefi 21842 . . . . . . . 8 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5049adantl 481 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
5113, 44ringcl 20166 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5232, 33, 43, 51syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5313, 44ringcl 20166 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
5432, 34, 43, 53syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))) ∈ (Base‘𝑅))
55 eqidd 2731 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
56 eqidd 2731 . . . . . . 7 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))
5750, 52, 54, 55, 56offval2 7676 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))(+g𝑅)((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5848, 57eqtr4d 2768 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))
5958oveq2d 7406 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6031adantr 480 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
61 ringcmn 20198 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6260, 61syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
63 eqid 2730 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
64 eqid 2730 . . . . 5 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))
6513, 3, 62, 50, 52, 54, 63, 64gsummptfidmadd2 19863 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))) ∘f (+g𝑅)(𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6659, 65eqtrd 2765 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
6766mpteq2dva 5203 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
68 psrass.t . . 3 × = (.r𝑆)
6931ringgrpd 20158 . . . . 5 (𝜑𝑅 ∈ Grp)
7069grpmgmd 18900 . . . 4 (𝜑𝑅 ∈ Mgm)
711, 2, 4, 70, 5, 6psraddcl 21854 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
721, 2, 44, 68, 14, 71, 35psrmulfval 21859 . 2 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
731, 2, 68, 31, 5, 35psrmulcl 21862 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ 𝐵)
741, 2, 68, 31, 6, 35psrmulcl 21862 . . . 4 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
751, 2, 3, 4, 73, 74psradd 21853 . . 3 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)))
7622a1i 11 . . . 4 (𝜑𝐷 ∈ V)
77 ovexd 7425 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
78 ovexd 7425 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))) ∈ V)
791, 2, 44, 68, 14, 5, 35psrmulfval 21859 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
801, 2, 44, 68, 14, 6, 35psrmulfval 21859 . . . 4 (𝜑 → (𝑌 × 𝑍) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))))
8176, 77, 78, 79, 80offval2 7676 . . 3 (𝜑 → ((𝑋 × 𝑍) ∘f (+g𝑅)(𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8275, 81eqtrd 2765 . 2 (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥)))))(+g𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑌𝑥)(.r𝑅)(𝑍‘(𝑘f𝑥))))))))
8367, 72, 823eqtr4d 2775 1 (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655  m cmap 8802  Fincfn 8921  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  +gcplusg 17227  .rcmulr 17228   Σg cgsu 17410  CMndccmn 19717  Ringcrg 20149   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-psr 21825
This theorem is referenced by:  psrring  21886
  Copyright terms: Public domain W3C validator