MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubglem Structured version   Visualization version   GIF version

Theorem mplsubglem 22036
Description: If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mplsubglem.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubglem (𝜑𝑈 ∈ (SubGrp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mplsubglem
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.u . . 3 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
2 ssrab2 4089 . . 3 {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ⊆ 𝐵
31, 2eqsstrdi 4049 . 2 (𝜑𝑈𝐵)
4 mplsubglem.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
5 mplsubglem.i . . . . 5 (𝜑𝐼𝑊)
6 mplsubglem.r . . . . 5 (𝜑𝑅 ∈ Grp)
7 mplsubglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
8 mplsubglem.z . . . . 5 0 = (0g𝑅)
9 mplsubglem.b . . . . 5 𝐵 = (Base‘𝑆)
104, 5, 6, 7, 8, 9psr0cl 21989 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
11 eqid 2734 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1211, 8grpidcl 18995 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 fconst6g 6797 . . . . . . . 8 ( 0 ∈ (Base‘𝑅) → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
146, 12, 133syl 18 . . . . . . 7 (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
15 eldifi 4140 . . . . . . . . 9 (𝑢 ∈ (𝐷 ∖ ∅) → 𝑢𝐷)
168fvexi 6920 . . . . . . . . . 10 0 ∈ V
1716fvconst2 7223 . . . . . . . . 9 (𝑢𝐷 → ((𝐷 × { 0 })‘𝑢) = 0 )
1815, 17syl 17 . . . . . . . 8 (𝑢 ∈ (𝐷 ∖ ∅) → ((𝐷 × { 0 })‘𝑢) = 0 )
1918adantl 481 . . . . . . 7 ((𝜑𝑢 ∈ (𝐷 ∖ ∅)) → ((𝐷 × { 0 })‘𝑢) = 0 )
2014, 19suppss 8217 . . . . . 6 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ ∅)
21 ss0 4407 . . . . . 6 (((𝐷 × { 0 }) supp 0 ) ⊆ ∅ → ((𝐷 × { 0 }) supp 0 ) = ∅)
2220, 21syl 17 . . . . 5 (𝜑 → ((𝐷 × { 0 }) supp 0 ) = ∅)
23 mplsubglem.0 . . . . 5 (𝜑 → ∅ ∈ 𝐴)
2422, 23eqeltrd 2838 . . . 4 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)
251eleq2d 2824 . . . . 5 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ (𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
26 oveq1 7437 . . . . . . 7 (𝑔 = (𝐷 × { 0 }) → (𝑔 supp 0 ) = ((𝐷 × { 0 }) supp 0 ))
2726eleq1d 2823 . . . . . 6 (𝑔 = (𝐷 × { 0 }) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2827elrab 3694 . . . . 5 ((𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2925, 28bitrdi 287 . . . 4 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)))
3010, 24, 29mpbir2and 713 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ 𝑈)
3130ne0d 4347 . 2 (𝜑𝑈 ≠ ∅)
32 eqid 2734 . . . . . . 7 (+g𝑆) = (+g𝑆)
336grpmgmd 18991 . . . . . . . 8 (𝜑𝑅 ∈ Mgm)
3433ad2antrr 726 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑅 ∈ Mgm)
351eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑢𝑈𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
36 oveq1 7437 . . . . . . . . . . . . 13 (𝑔 = 𝑢 → (𝑔 supp 0 ) = (𝑢 supp 0 ))
3736eleq1d 2823 . . . . . . . . . . . 12 (𝑔 = 𝑢 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑢 supp 0 ) ∈ 𝐴))
3837elrab 3694 . . . . . . . . . . 11 (𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
3935, 38bitrdi 287 . . . . . . . . . 10 (𝜑 → (𝑢𝑈 ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)))
4039biimpa 476 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
4140simpld 494 . . . . . . . 8 ((𝜑𝑢𝑈) → 𝑢𝐵)
4241adantr 480 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢𝐵)
431adantr 480 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
4443eleq2d 2824 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
45 oveq1 7437 . . . . . . . . . . . 12 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
4645eleq1d 2823 . . . . . . . . . . 11 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
4746elrab 3694 . . . . . . . . . 10 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
4844, 47bitrdi 287 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
4948biimpa 476 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
5049simpld 494 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣𝐵)
514, 9, 32, 34, 42, 50psraddcl 21975 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝐵)
52 ovexd 7465 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V)
53 sseq2 4021 . . . . . . . . . 10 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝑦𝑥𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
5453imbi1d 341 . . . . . . . . 9 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
5554albidv 1917 . . . . . . . 8 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
56 mplsubglem.y . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
5756expr 456 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
5857alrimiv 1924 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
5958ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
6059ad2antrr 726 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
6140simprd 495 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6261adantr 480 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6349simprd 495 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ∈ 𝐴)
64 mplsubglem.a . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
6564ralrimivva 3199 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
6665ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
67 uneq1 4170 . . . . . . . . . . 11 (𝑥 = (𝑢 supp 0 ) → (𝑥𝑦) = ((𝑢 supp 0 ) ∪ 𝑦))
6867eleq1d 2823 . . . . . . . . . 10 (𝑥 = (𝑢 supp 0 ) → ((𝑥𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴))
69 uneq2 4171 . . . . . . . . . . 11 (𝑦 = (𝑣 supp 0 ) → ((𝑢 supp 0 ) ∪ 𝑦) = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
7069eleq1d 2823 . . . . . . . . . 10 (𝑦 = (𝑣 supp 0 ) → (((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴))
7168, 70rspc2va 3633 . . . . . . . . 9 ((((𝑢 supp 0 ) ∈ 𝐴 ∧ (𝑣 supp 0 ) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7262, 63, 66, 71syl21anc 838 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7355, 60, 72rspcdva 3622 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴))
744, 11, 7, 9, 51psrelbas 21971 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣):𝐷⟶(Base‘𝑅))
75 eqid 2734 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
764, 9, 75, 32, 42, 50psradd 21974 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) = (𝑢f (+g𝑅)𝑣))
7776fveq1d 6908 . . . . . . . . . 10 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
7877adantr 480 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
79 eldifi 4140 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘𝐷)
804, 11, 7, 9, 41psrelbas 21971 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8180adantr 480 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8281ffnd 6737 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢 Fn 𝐷)
834, 11, 7, 9, 50psrelbas 21971 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣:𝐷⟶(Base‘𝑅))
8483ffnd 6737 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣 Fn 𝐷)
85 ovex 7463 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
867, 85rabex2 5346 . . . . . . . . . . . 12 𝐷 ∈ V
8786a1i 11 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝐷 ∈ V)
88 inidm 4234 . . . . . . . . . . 11 (𝐷𝐷) = 𝐷
89 eqidd 2735 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑢𝑘) = (𝑢𝑘))
90 eqidd 2735 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑣𝑘) = (𝑣𝑘))
9182, 84, 87, 87, 88, 89, 90ofval 7707 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
9279, 91sylan2 593 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
93 ssun1 4187 . . . . . . . . . . . . . 14 (𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
94 sscon 4152 . . . . . . . . . . . . . 14 ((𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 )))
9593, 94ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 ))
9695sseli 3990 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 )))
97 ssidd 4018 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ⊆ (𝑢 supp 0 ))
9886a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝐷 ∈ V)
9916a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 0 ∈ V)
10080, 97, 98, 99suppssr 8218 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
101100adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
10296, 101sylan2 593 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑢𝑘) = 0 )
103 ssun2 4188 . . . . . . . . . . . . . 14 (𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
104 sscon 4152 . . . . . . . . . . . . . 14 ((𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 )))
105103, 104ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 ))
106105sseli 3990 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )))
107 ssidd 4018 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
10816a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 0 ∈ V)
10983, 107, 87, 108suppssr 8218 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
110106, 109sylan2 593 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑣𝑘) = 0 )
111102, 110oveq12d 7448 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = ( 0 (+g𝑅) 0 ))
1126ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑅 ∈ Grp)
11311, 75, 8grplid 18997 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
114112, 12, 113syl2anc2 585 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ( 0 (+g𝑅) 0 ) = 0 )
115114adantr 480 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ( 0 (+g𝑅) 0 ) = 0 )
116111, 115eqtrd 2774 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = 0 )
11778, 92, 1163eqtrd 2778 . . . . . . . 8 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = 0 )
11874, 117suppss 8217 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
119 sseq1 4020 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
120 eleq1 2826 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
121119, 120imbi12d 344 . . . . . . . 8 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) ↔ (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
122121spcgv 3595 . . . . . . 7 (((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) → (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
12352, 73, 118, 122syl3c 66 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)
1241ad2antrr 726 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
125124eleq2d 2824 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ (𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
126 oveq1 7437 . . . . . . . . 9 (𝑔 = (𝑢(+g𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢(+g𝑆)𝑣) supp 0 ))
127126eleq1d 2823 . . . . . . . 8 (𝑔 = (𝑢(+g𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
128127elrab 3694 . . . . . . 7 ((𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
129125, 128bitrdi 287 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
13051, 123, 129mpbir2and 713 . . . . 5 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝑈)
131130ralrimiva 3143 . . . 4 ((𝜑𝑢𝑈) → ∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈)
1324, 5, 6psrgrp 21993 . . . . . 6 (𝜑𝑆 ∈ Grp)
133 eqid 2734 . . . . . . 7 (invg𝑆) = (invg𝑆)
1349, 133grpinvcl 19017 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑢𝐵) → ((invg𝑆)‘𝑢) ∈ 𝐵)
135132, 41, 134syl2an2r 685 . . . . 5 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝐵)
136 ovexd 7465 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ V)
137 sseq2 4021 . . . . . . . . 9 (𝑥 = (𝑢 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑢 supp 0 )))
138137imbi1d 341 . . . . . . . 8 (𝑥 = (𝑢 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
139138albidv 1917 . . . . . . 7 (𝑥 = (𝑢 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
14059adantr 480 . . . . . . 7 ((𝜑𝑢𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
141139, 140, 61rspcdva 3622 . . . . . 6 ((𝜑𝑢𝑈) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴))
1425adantr 480 . . . . . . . . 9 ((𝜑𝑢𝑈) → 𝐼𝑊)
1436adantr 480 . . . . . . . . 9 ((𝜑𝑢𝑈) → 𝑅 ∈ Grp)
144 eqid 2734 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
1454, 142, 143, 7, 144, 9, 133, 41psrneg 21996 . . . . . . . 8 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) = ((invg𝑅) ∘ 𝑢))
146145oveq1d 7445 . . . . . . 7 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) = (((invg𝑅) ∘ 𝑢) supp 0 ))
14711, 144grpinvfn 19011 . . . . . . . . 9 (invg𝑅) Fn (Base‘𝑅)
148147a1i 11 . . . . . . . 8 ((𝜑𝑢𝑈) → (invg𝑅) Fn (Base‘𝑅))
1498, 144grpinvid 19029 . . . . . . . . 9 (𝑅 ∈ Grp → ((invg𝑅)‘ 0 ) = 0 )
150143, 149syl 17 . . . . . . . 8 ((𝜑𝑢𝑈) → ((invg𝑅)‘ 0 ) = 0 )
151148, 80, 98, 99, 150suppcoss 8230 . . . . . . 7 ((𝜑𝑢𝑈) → (((invg𝑅) ∘ 𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))
152146, 151eqsstrd 4033 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))
153 sseq1 4020 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦 ⊆ (𝑢 supp 0 ) ↔ (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 )))
154 eleq1 2826 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
155153, 154imbi12d 344 . . . . . . 7 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → ((𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) ↔ ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
156155spcgv 3595 . . . . . 6 ((((invg𝑆)‘𝑢) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) → ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
157136, 141, 152, 156syl3c 66 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)
15843eleq2d 2824 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ ((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
159 oveq1 7437 . . . . . . . 8 (𝑔 = ((invg𝑆)‘𝑢) → (𝑔 supp 0 ) = (((invg𝑆)‘𝑢) supp 0 ))
160159eleq1d 2823 . . . . . . 7 (𝑔 = ((invg𝑆)‘𝑢) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
161160elrab 3694 . . . . . 6 (((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
162158, 161bitrdi 287 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
163135, 157, 162mpbir2and 713 . . . 4 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝑈)
164131, 163jca 511 . . 3 ((𝜑𝑢𝑈) → (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
165164ralrimiva 3143 . 2 (𝜑 → ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
1669, 32, 133issubg2 19171 . . 3 (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
167132, 166syl 17 . 2 (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
1683, 31, 165, 167mpbir3and 1341 1 (𝜑𝑈 ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1534   = wceq 1536  wcel 2105  wne 2937  wral 3058  {crab 3432  Vcvv 3477  cdif 3959  cun 3960  wss 3962  c0 4338  {csn 4630   × cxp 5686  ccnv 5687  cima 5691  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694   supp csupp 8183  m cmap 8864  Fincfn 8983  cn 12263  0cn0 12523  Basecbs 17244  +gcplusg 17297  0gc0g 17485  Mgmcmgm 18663  Grpcgrp 18963  invgcminusg 18964  SubGrpcsubg 19150   mPwSer cmps 21941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-psr 21946
This theorem is referenced by:  mpllsslem  22037  mplsubg  22039
  Copyright terms: Public domain W3C validator