MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubglem Structured version   Visualization version   GIF version

Theorem mplsubglem 21428
Description: If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mplsubglem.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubglem (𝜑𝑈 ∈ (SubGrp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mplsubglem
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.u . . 3 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
2 ssrab2 4041 . . 3 {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ⊆ 𝐵
31, 2eqsstrdi 4002 . 2 (𝜑𝑈𝐵)
4 mplsubglem.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
5 mplsubglem.i . . . . 5 (𝜑𝐼𝑊)
6 mplsubglem.r . . . . 5 (𝜑𝑅 ∈ Grp)
7 mplsubglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
8 mplsubglem.z . . . . 5 0 = (0g𝑅)
9 mplsubglem.b . . . . 5 𝐵 = (Base‘𝑆)
104, 5, 6, 7, 8, 9psr0cl 21385 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
11 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1211, 8grpidcl 18786 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 fconst6g 6735 . . . . . . . 8 ( 0 ∈ (Base‘𝑅) → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
146, 12, 133syl 18 . . . . . . 7 (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
15 eldifi 4090 . . . . . . . . 9 (𝑢 ∈ (𝐷 ∖ ∅) → 𝑢𝐷)
168fvexi 6860 . . . . . . . . . 10 0 ∈ V
1716fvconst2 7157 . . . . . . . . 9 (𝑢𝐷 → ((𝐷 × { 0 })‘𝑢) = 0 )
1815, 17syl 17 . . . . . . . 8 (𝑢 ∈ (𝐷 ∖ ∅) → ((𝐷 × { 0 })‘𝑢) = 0 )
1918adantl 483 . . . . . . 7 ((𝜑𝑢 ∈ (𝐷 ∖ ∅)) → ((𝐷 × { 0 })‘𝑢) = 0 )
2014, 19suppss 8129 . . . . . 6 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ ∅)
21 ss0 4362 . . . . . 6 (((𝐷 × { 0 }) supp 0 ) ⊆ ∅ → ((𝐷 × { 0 }) supp 0 ) = ∅)
2220, 21syl 17 . . . . 5 (𝜑 → ((𝐷 × { 0 }) supp 0 ) = ∅)
23 mplsubglem.0 . . . . 5 (𝜑 → ∅ ∈ 𝐴)
2422, 23eqeltrd 2834 . . . 4 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)
251eleq2d 2820 . . . . 5 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ (𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
26 oveq1 7368 . . . . . . 7 (𝑔 = (𝐷 × { 0 }) → (𝑔 supp 0 ) = ((𝐷 × { 0 }) supp 0 ))
2726eleq1d 2819 . . . . . 6 (𝑔 = (𝐷 × { 0 }) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2827elrab 3649 . . . . 5 ((𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2925, 28bitrdi 287 . . . 4 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)))
3010, 24, 29mpbir2and 712 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ 𝑈)
3130ne0d 4299 . 2 (𝜑𝑈 ≠ ∅)
32 eqid 2733 . . . . . . 7 (+g𝑆) = (+g𝑆)
336ad2antrr 725 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑅 ∈ Grp)
341eleq2d 2820 . . . . . . . . . . 11 (𝜑 → (𝑢𝑈𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
35 oveq1 7368 . . . . . . . . . . . . 13 (𝑔 = 𝑢 → (𝑔 supp 0 ) = (𝑢 supp 0 ))
3635eleq1d 2819 . . . . . . . . . . . 12 (𝑔 = 𝑢 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑢 supp 0 ) ∈ 𝐴))
3736elrab 3649 . . . . . . . . . . 11 (𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
3834, 37bitrdi 287 . . . . . . . . . 10 (𝜑 → (𝑢𝑈 ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)))
3938biimpa 478 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
4039simpld 496 . . . . . . . 8 ((𝜑𝑢𝑈) → 𝑢𝐵)
4140adantr 482 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢𝐵)
421adantr 482 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
4342eleq2d 2820 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
44 oveq1 7368 . . . . . . . . . . . 12 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
4544eleq1d 2819 . . . . . . . . . . 11 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
4645elrab 3649 . . . . . . . . . 10 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
4743, 46bitrdi 287 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
4847biimpa 478 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
4948simpld 496 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣𝐵)
504, 9, 32, 33, 41, 49psraddcl 21374 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝐵)
51 ovexd 7396 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V)
52 sseq2 3974 . . . . . . . . . 10 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝑦𝑥𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
5352imbi1d 342 . . . . . . . . 9 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
5453albidv 1924 . . . . . . . 8 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
55 mplsubglem.y . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
5655expr 458 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
5756alrimiv 1931 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
5857ralrimiva 3140 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5958ad2antrr 725 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
6039simprd 497 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6160adantr 482 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6248simprd 497 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ∈ 𝐴)
63 mplsubglem.a . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
6463ralrimivva 3194 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
6564ad2antrr 725 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
66 uneq1 4120 . . . . . . . . . . 11 (𝑥 = (𝑢 supp 0 ) → (𝑥𝑦) = ((𝑢 supp 0 ) ∪ 𝑦))
6766eleq1d 2819 . . . . . . . . . 10 (𝑥 = (𝑢 supp 0 ) → ((𝑥𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴))
68 uneq2 4121 . . . . . . . . . . 11 (𝑦 = (𝑣 supp 0 ) → ((𝑢 supp 0 ) ∪ 𝑦) = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
6968eleq1d 2819 . . . . . . . . . 10 (𝑦 = (𝑣 supp 0 ) → (((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴))
7067, 69rspc2va 3593 . . . . . . . . 9 ((((𝑢 supp 0 ) ∈ 𝐴 ∧ (𝑣 supp 0 ) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7161, 62, 65, 70syl21anc 837 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7254, 59, 71rspcdva 3584 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴))
734, 11, 7, 9, 50psrelbas 21370 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣):𝐷⟶(Base‘𝑅))
74 eqid 2733 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
754, 9, 74, 32, 41, 49psradd 21373 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) = (𝑢f (+g𝑅)𝑣))
7675fveq1d 6848 . . . . . . . . . 10 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
7776adantr 482 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
78 eldifi 4090 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘𝐷)
794, 11, 7, 9, 40psrelbas 21370 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8079adantr 482 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8180ffnd 6673 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢 Fn 𝐷)
824, 11, 7, 9, 49psrelbas 21370 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣:𝐷⟶(Base‘𝑅))
8382ffnd 6673 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣 Fn 𝐷)
84 ovex 7394 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
857, 84rabex2 5295 . . . . . . . . . . . 12 𝐷 ∈ V
8685a1i 11 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝐷 ∈ V)
87 inidm 4182 . . . . . . . . . . 11 (𝐷𝐷) = 𝐷
88 eqidd 2734 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑢𝑘) = (𝑢𝑘))
89 eqidd 2734 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑣𝑘) = (𝑣𝑘))
9081, 83, 86, 86, 87, 88, 89ofval 7632 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
9178, 90sylan2 594 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
92 ssun1 4136 . . . . . . . . . . . . . 14 (𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
93 sscon 4102 . . . . . . . . . . . . . 14 ((𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 )))
9492, 93ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 ))
9594sseli 3944 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 )))
96 ssidd 3971 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ⊆ (𝑢 supp 0 ))
9785a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝐷 ∈ V)
9816a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 0 ∈ V)
9979, 96, 97, 98suppssr 8131 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
10099adantlr 714 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
10195, 100sylan2 594 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑢𝑘) = 0 )
102 ssun2 4137 . . . . . . . . . . . . . 14 (𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
103 sscon 4102 . . . . . . . . . . . . . 14 ((𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 )))
104102, 103ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 ))
105104sseli 3944 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )))
106 ssidd 3971 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
10716a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 0 ∈ V)
10882, 106, 86, 107suppssr 8131 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
109105, 108sylan2 594 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑣𝑘) = 0 )
110101, 109oveq12d 7379 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = ( 0 (+g𝑅) 0 ))
11111, 74, 8grplid 18788 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
11233, 12, 111syl2anc2 586 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ( 0 (+g𝑅) 0 ) = 0 )
113112adantr 482 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ( 0 (+g𝑅) 0 ) = 0 )
114110, 113eqtrd 2773 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = 0 )
11577, 91, 1143eqtrd 2777 . . . . . . . 8 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = 0 )
11673, 115suppss 8129 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
117 sseq1 3973 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
118 eleq1 2822 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
119117, 118imbi12d 345 . . . . . . . 8 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) ↔ (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
120119spcgv 3557 . . . . . . 7 (((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) → (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
12151, 72, 116, 120syl3c 66 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)
1221ad2antrr 725 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
123122eleq2d 2820 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ (𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
124 oveq1 7368 . . . . . . . . 9 (𝑔 = (𝑢(+g𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢(+g𝑆)𝑣) supp 0 ))
125124eleq1d 2819 . . . . . . . 8 (𝑔 = (𝑢(+g𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
126125elrab 3649 . . . . . . 7 ((𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
127123, 126bitrdi 287 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
12850, 121, 127mpbir2and 712 . . . . 5 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝑈)
129128ralrimiva 3140 . . . 4 ((𝜑𝑢𝑈) → ∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈)
1304, 5, 6psrgrp 21389 . . . . . 6 (𝜑𝑆 ∈ Grp)
131 eqid 2733 . . . . . . 7 (invg𝑆) = (invg𝑆)
1329, 131grpinvcl 18806 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑢𝐵) → ((invg𝑆)‘𝑢) ∈ 𝐵)
133130, 40, 132syl2an2r 684 . . . . 5 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝐵)
134 ovexd 7396 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ V)
135 sseq2 3974 . . . . . . . . 9 (𝑥 = (𝑢 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑢 supp 0 )))
136135imbi1d 342 . . . . . . . 8 (𝑥 = (𝑢 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
137136albidv 1924 . . . . . . 7 (𝑥 = (𝑢 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
13858adantr 482 . . . . . . 7 ((𝜑𝑢𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
139137, 138, 60rspcdva 3584 . . . . . 6 ((𝜑𝑢𝑈) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴))
1405adantr 482 . . . . . . . . 9 ((𝜑𝑢𝑈) → 𝐼𝑊)
1416adantr 482 . . . . . . . . 9 ((𝜑𝑢𝑈) → 𝑅 ∈ Grp)
142 eqid 2733 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
1434, 140, 141, 7, 142, 9, 131, 40psrneg 21392 . . . . . . . 8 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) = ((invg𝑅) ∘ 𝑢))
144143oveq1d 7376 . . . . . . 7 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) = (((invg𝑅) ∘ 𝑢) supp 0 ))
14511, 142grpinvfn 18800 . . . . . . . . 9 (invg𝑅) Fn (Base‘𝑅)
146145a1i 11 . . . . . . . 8 ((𝜑𝑢𝑈) → (invg𝑅) Fn (Base‘𝑅))
1478, 142grpinvid 18816 . . . . . . . . 9 (𝑅 ∈ Grp → ((invg𝑅)‘ 0 ) = 0 )
148141, 147syl 17 . . . . . . . 8 ((𝜑𝑢𝑈) → ((invg𝑅)‘ 0 ) = 0 )
149146, 79, 97, 98, 148suppcoss 8142 . . . . . . 7 ((𝜑𝑢𝑈) → (((invg𝑅) ∘ 𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))
150144, 149eqsstrd 3986 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))
151 sseq1 3973 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦 ⊆ (𝑢 supp 0 ) ↔ (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 )))
152 eleq1 2822 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
153151, 152imbi12d 345 . . . . . . 7 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → ((𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) ↔ ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
154153spcgv 3557 . . . . . 6 ((((invg𝑆)‘𝑢) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) → ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
155134, 139, 150, 154syl3c 66 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)
15642eleq2d 2820 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ ((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
157 oveq1 7368 . . . . . . . 8 (𝑔 = ((invg𝑆)‘𝑢) → (𝑔 supp 0 ) = (((invg𝑆)‘𝑢) supp 0 ))
158157eleq1d 2819 . . . . . . 7 (𝑔 = ((invg𝑆)‘𝑢) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
159158elrab 3649 . . . . . 6 (((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
160156, 159bitrdi 287 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
161133, 155, 160mpbir2and 712 . . . 4 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝑈)
162129, 161jca 513 . . 3 ((𝜑𝑢𝑈) → (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
163162ralrimiva 3140 . 2 (𝜑 → ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
1649, 32, 131issubg2 18951 . . 3 (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
165130, 164syl 17 . 2 (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
1663, 31, 163, 165mpbir3and 1343 1 (𝜑𝑈 ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4286  {csn 4590   × cxp 5635  ccnv 5636  cima 5640  ccom 5641   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7361  f cof 7619   supp csupp 8096  m cmap 8771  Fincfn 8889  cn 12161  0cn0 12421  Basecbs 17091  +gcplusg 17141  0gc0g 17329  Grpcgrp 18756  invgcminusg 18757  SubGrpcsubg 18930   mPwSer cmps 21329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-ixp 8842  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-sca 17157  df-vsca 17158  df-ip 17159  df-tset 17160  df-ple 17161  df-ds 17163  df-hom 17165  df-cco 17166  df-0g 17331  df-prds 17337  df-pws 17339  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-subg 18933  df-psr 21334
This theorem is referenced by:  mpllsslem  21429  mplsubg  21431
  Copyright terms: Public domain W3C validator