Step | Hyp | Ref
| Expression |
1 | | mplsubglem.u |
. . 3
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
2 | | ssrab2 4013 |
. . 3
⊢ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ⊆ 𝐵 |
3 | 1, 2 | eqsstrdi 3975 |
. 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
4 | | mplsubglem.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
5 | | mplsubglem.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
6 | | mplsubglem.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
7 | | mplsubglem.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
8 | | mplsubglem.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
9 | | mplsubglem.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
10 | 4, 5, 6, 7, 8, 9 | psr0cl 21163 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | 11, 8 | grpidcl 18607 |
. . . . . . . 8
⊢ (𝑅 ∈ Grp → 0 ∈
(Base‘𝑅)) |
13 | | fconst6g 6663 |
. . . . . . . 8
⊢ ( 0 ∈
(Base‘𝑅) →
(𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) |
14 | 6, 12, 13 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) |
15 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝐷 ∖ ∅) → 𝑢 ∈ 𝐷) |
16 | 8 | fvexi 6788 |
. . . . . . . . . 10
⊢ 0 ∈
V |
17 | 16 | fvconst2 7079 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐷 → ((𝐷 × { 0 })‘𝑢) = 0 ) |
18 | 15, 17 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝐷 ∖ ∅) → ((𝐷 × { 0 })‘𝑢) = 0 ) |
19 | 18 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐷 ∖ ∅)) → ((𝐷 × { 0 })‘𝑢) = 0 ) |
20 | 14, 19 | suppss 8010 |
. . . . . 6
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆
∅) |
21 | | ss0 4332 |
. . . . . 6
⊢ (((𝐷 × { 0 }) supp 0 ) ⊆ ∅ →
((𝐷 × { 0 }) supp 0 ) =
∅) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) =
∅) |
23 | | mplsubglem.0 |
. . . . 5
⊢ (𝜑 → ∅ ∈ 𝐴) |
24 | 22, 23 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴) |
25 | 1 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ (𝐷 × { 0 }) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
26 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑔 = (𝐷 × { 0 }) → (𝑔 supp 0 ) = ((𝐷 × { 0 }) supp 0 )) |
27 | 26 | eleq1d 2823 |
. . . . . 6
⊢ (𝑔 = (𝐷 × { 0 }) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)) |
28 | 27 | elrab 3624 |
. . . . 5
⊢ ((𝐷 × { 0 }) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)) |
29 | 25, 28 | bitrdi 287 |
. . . 4
⊢ (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))) |
30 | 10, 24, 29 | mpbir2and 710 |
. . 3
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝑈) |
31 | 30 | ne0d 4269 |
. 2
⊢ (𝜑 → 𝑈 ≠ ∅) |
32 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) |
33 | 6 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑅 ∈ Grp) |
34 | 1 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↔ 𝑢 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
35 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑢 → (𝑔 supp 0 ) = (𝑢 supp 0 )) |
36 | 35 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑢 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑢 supp 0 ) ∈ 𝐴)) |
37 | 36 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)) |
38 | 34, 37 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↔ (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))) |
39 | 38 | biimpa 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)) |
40 | 39 | simpld 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝐵) |
41 | 40 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 ∈ 𝐵) |
42 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
43 | 42 | eleq2d 2824 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
44 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) |
45 | 44 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) |
46 | 45 | elrab 3624 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
47 | 43, 46 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) |
48 | 47 | biimpa 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
49 | 48 | simpld 495 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝐵) |
50 | 4, 9, 32, 33, 41, 49 | psraddcl 21152 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝐵) |
51 | | ovexd 7310 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈
V) |
52 | | sseq2 3947 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) |
53 | 52 | imbi1d 342 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴))) |
54 | 53 | albidv 1923 |
. . . . . . . 8
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴))) |
55 | | mplsubglem.y |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) |
56 | 55 | expr 457 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
57 | 56 | alrimiv 1930 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
58 | 57 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
59 | 58 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
60 | 39 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 supp 0 ) ∈ 𝐴) |
61 | 60 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢 supp 0 ) ∈ 𝐴) |
62 | 48 | simprd 496 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 supp 0 ) ∈ 𝐴) |
63 | | mplsubglem.a |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
64 | 63 | ralrimivva 3123 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) |
65 | 64 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) |
66 | | uneq1 4090 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢 supp 0 ) → (𝑥 ∪ 𝑦) = ((𝑢 supp 0 ) ∪ 𝑦)) |
67 | 66 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 supp 0 ) → ((𝑥 ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴)) |
68 | | uneq2 4091 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑣 supp 0 ) → ((𝑢 supp 0 ) ∪ 𝑦) = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) |
69 | 68 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑣 supp 0 ) → (((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)) |
70 | 67, 69 | rspc2va 3571 |
. . . . . . . . 9
⊢ ((((𝑢 supp 0 ) ∈ 𝐴 ∧ (𝑣 supp 0 ) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴) |
71 | 61, 62, 65, 70 | syl21anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴) |
72 | 54, 59, 71 | rspcdva 3562 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴)) |
73 | 4, 11, 7, 9, 50 | psrelbas 21148 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) |
74 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) |
75 | 4, 9, 74, 32, 41, 49 | psradd 21151 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) = (𝑢 ∘f
(+g‘𝑅)𝑣)) |
76 | 75 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = ((𝑢 ∘f
(+g‘𝑅)𝑣)‘𝑘)) |
77 | 76 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = ((𝑢 ∘f
(+g‘𝑅)𝑣)‘𝑘)) |
78 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) |
79 | 4, 11, 7, 9, 40 | psrelbas 21148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢:𝐷⟶(Base‘𝑅)) |
80 | 79 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢:𝐷⟶(Base‘𝑅)) |
81 | 80 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 Fn 𝐷) |
82 | 4, 11, 7, 9, 49 | psrelbas 21148 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣:𝐷⟶(Base‘𝑅)) |
83 | 82 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 Fn 𝐷) |
84 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m 𝐼) ∈ V |
85 | 7, 84 | rabex2 5258 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈ V |
86 | 85 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝐷 ∈ V) |
87 | | inidm 4152 |
. . . . . . . . . . 11
⊢ (𝐷 ∩ 𝐷) = 𝐷 |
88 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → (𝑢‘𝑘) = (𝑢‘𝑘)) |
89 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → (𝑣‘𝑘) = (𝑣‘𝑘)) |
90 | 81, 83, 86, 86, 87, 88, 89 | ofval 7544 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → ((𝑢 ∘f
(+g‘𝑅)𝑣)‘𝑘) = ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘))) |
91 | 78, 90 | sylan2 593 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢 ∘f
(+g‘𝑅)𝑣)‘𝑘) = ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘))) |
92 | | ssun1 4106 |
. . . . . . . . . . . . . 14
⊢ (𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) |
93 | | sscon 4073 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 ))) |
94 | 92, 93 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 )) |
95 | 94 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) |
96 | | ssidd 3944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 supp 0 ) ⊆ (𝑢 supp 0 )) |
97 | 85 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐷 ∈ V) |
98 | 16 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ∈ V) |
99 | 79, 96, 97, 98 | suppssr 8012 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢‘𝑘) = 0 ) |
100 | 99 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢‘𝑘) = 0 ) |
101 | 95, 100 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑢‘𝑘) = 0 ) |
102 | | ssun2 4107 |
. . . . . . . . . . . . . 14
⊢ (𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) |
103 | | sscon 4073 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 ))) |
104 | 102, 103 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 )) |
105 | 104 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) |
106 | | ssidd 3944 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) |
107 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 0 ∈ V) |
108 | 82, 106, 86, 107 | suppssr 8012 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) |
109 | 105, 108 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑣‘𝑘) = 0 ) |
110 | 101, 109 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘)) = ( 0 (+g‘𝑅) 0 )) |
111 | 11, 74, 8 | grplid 18609 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Grp ∧ 0 ∈
(Base‘𝑅)) → (
0
(+g‘𝑅)
0 ) =
0
) |
112 | 33, 12, 111 | syl2anc2 585 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
113 | 112 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ( 0
(+g‘𝑅)
0 ) =
0
) |
114 | 110, 113 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘)) = 0 ) |
115 | 77, 91, 114 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = 0 ) |
116 | 73, 115 | suppss 8010 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) |
117 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) |
118 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
119 | 117, 118 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴) ↔ (((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
120 | 119 | spcgv 3535 |
. . . . . . 7
⊢ (((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴) → (((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
121 | 51, 72, 116, 120 | syl3c 66 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴) |
122 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
123 | 122 | eleq2d 2824 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢(+g‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
124 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑔 = (𝑢(+g‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢(+g‘𝑆)𝑣) supp 0 )) |
125 | 124 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑔 = (𝑢(+g‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
126 | 125 | elrab 3624 |
. . . . . . 7
⊢ ((𝑢(+g‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢(+g‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
127 | 123, 126 | bitrdi 287 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢(+g‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
128 | 50, 121, 127 | mpbir2and 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
129 | 128 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
130 | 4, 5, 6 | psrgrp 21167 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Grp) |
131 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) |
132 | 9, 131 | grpinvcl 18627 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((invg‘𝑆)‘𝑢) ∈ 𝐵) |
133 | 130, 40, 132 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝐵) |
134 | | ovexd 7310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ∈
V) |
135 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑢 supp 0 ))) |
136 | 135 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴))) |
137 | 136 | albidv 1923 |
. . . . . . 7
⊢ (𝑥 = (𝑢 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴))) |
138 | 58 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
139 | 137, 138,
60 | rspcdva 3562 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴)) |
140 | 5 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐼 ∈ 𝑊) |
141 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑅 ∈ Grp) |
142 | | eqid 2738 |
. . . . . . . . 9
⊢
(invg‘𝑅) = (invg‘𝑅) |
143 | 4, 140, 141, 7, 142, 9, 131, 40 | psrneg 21169 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) = ((invg‘𝑅) ∘ 𝑢)) |
144 | 143 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) =
(((invg‘𝑅)
∘ 𝑢) supp 0
)) |
145 | 11, 142 | grpinvfn 18621 |
. . . . . . . . 9
⊢
(invg‘𝑅) Fn (Base‘𝑅) |
146 | 145 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (invg‘𝑅) Fn (Base‘𝑅)) |
147 | 8, 142 | grpinvid 18636 |
. . . . . . . . 9
⊢ (𝑅 ∈ Grp →
((invg‘𝑅)‘ 0 ) = 0 ) |
148 | 141, 147 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑅)‘ 0 ) = 0 ) |
149 | 146, 79, 97, 98, 148 | suppcoss 8023 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑅) ∘ 𝑢) supp 0 ) ⊆ (𝑢 supp 0 )) |
150 | 144, 149 | eqsstrd 3959 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 )) |
151 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → (𝑦 ⊆ (𝑢 supp 0 ) ↔
(((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))) |
152 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → (𝑦 ∈ 𝐴 ↔ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
153 | 151, 152 | imbi12d 345 |
. . . . . . 7
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → ((𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴) ↔ ((((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) →
(((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
154 | 153 | spcgv 3535 |
. . . . . 6
⊢
((((invg‘𝑆)‘𝑢) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴) → ((((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) →
(((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
155 | 134, 139,
150, 154 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴) |
156 | 42 | eleq2d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) ∈ 𝑈 ↔ ((invg‘𝑆)‘𝑢) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
157 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑔 = ((invg‘𝑆)‘𝑢) → (𝑔 supp 0 ) =
(((invg‘𝑆)‘𝑢) supp 0 )) |
158 | 157 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑔 = ((invg‘𝑆)‘𝑢) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
159 | 158 | elrab 3624 |
. . . . . 6
⊢
(((invg‘𝑆)‘𝑢) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (((invg‘𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
160 | 156, 159 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) ∈ 𝑈 ↔ (((invg‘𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
161 | 133, 155,
160 | mpbir2and 710 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝑈) |
162 | 129, 161 | jca 512 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
163 | 162 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
164 | 9, 32, 131 | issubg2 18770 |
. . 3
⊢ (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
165 | 130, 164 | syl 17 |
. 2
⊢ (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
166 | 3, 31, 163, 165 | mpbir3and 1341 |
1
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |