MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psd1 Structured version   Visualization version   GIF version

Theorem psd1 22052
Description: The derivative of one is zero. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psd1.s 𝑆 = (𝐼 mPwSer 𝑅)
psd1.u 1 = (1r𝑆)
psd1.z 0 = (0g𝑆)
psd1.i (𝜑𝐼𝑉)
psd1.r (𝜑𝑅 ∈ CRing)
psd1.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psd1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) = 0 )

Proof of Theorem psd1
StepHypRef Expression
1 psd1.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2729 . . . . 5 (+g𝑆) = (+g𝑆)
4 eqid 2729 . . . . 5 (.r𝑆) = (.r𝑆)
5 psd1.r . . . . 5 (𝜑𝑅 ∈ CRing)
6 psd1.x . . . . 5 (𝜑𝑋𝐼)
7 psd1.i . . . . . . . 8 (𝜑𝐼𝑉)
81, 7, 5psrcrng 21879 . . . . . . 7 (𝜑𝑆 ∈ CRing)
98crngringd 20131 . . . . . 6 (𝜑𝑆 ∈ Ring)
10 psd1.u . . . . . . 7 1 = (1r𝑆)
112, 10ringidcl 20150 . . . . . 6 (𝑆 ∈ Ring → 1 ∈ (Base‘𝑆))
129, 11syl 17 . . . . 5 (𝜑1 ∈ (Base‘𝑆))
131, 2, 3, 4, 5, 6, 12, 12psdmul 22051 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘( 1 (.r𝑆) 1 )) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 )(+g𝑆)( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))))
142, 4, 10, 9, 12ringlidmd 20157 . . . . 5 (𝜑 → ( 1 (.r𝑆) 1 ) = 1 )
1514fveq2d 6826 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘( 1 (.r𝑆) 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
165crnggrpd 20132 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
1716grpmgmd 18840 . . . . . . 7 (𝜑𝑅 ∈ Mgm)
181, 2, 17, 6, 12psdcl 22046 . . . . . 6 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ∈ (Base‘𝑆))
192, 4, 10, 9, 18ringridmd 20158 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 ) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
202, 4, 10, 9, 18ringlidmd 20157 . . . . 5 (𝜑 → ( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
2119, 20oveq12d 7367 . . . 4 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 )(+g𝑆)( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2213, 15, 213eqtr3rd 2773 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
238crnggrpd 20132 . . . 4 (𝜑𝑆 ∈ Grp)
24 psd1.z . . . . 5 0 = (0g𝑆)
252, 3, 24grpid 18854 . . . 4 ((𝑆 ∈ Grp ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ∈ (Base‘𝑆)) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ↔ 0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2623, 18, 25syl2anc 584 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ↔ 0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2722, 26mpbid 232 . 2 (𝜑0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
2827eqcomd 2735 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Grpcgrp 18812  1rcur 20066  Ringcrg 20118  CRingccrg 20119   mPwSer cmps 21811   mPSDer cpsd 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-psr 21816  df-psd 22041
This theorem is referenced by:  psdascl  22053
  Copyright terms: Public domain W3C validator