MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psd1 Structured version   Visualization version   GIF version

Theorem psd1 22189
Description: The derivative of one is zero. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psd1.s 𝑆 = (𝐼 mPwSer 𝑅)
psd1.u 1 = (1r𝑆)
psd1.z 0 = (0g𝑆)
psd1.i (𝜑𝐼𝑉)
psd1.r (𝜑𝑅 ∈ CRing)
psd1.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psd1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) = 0 )

Proof of Theorem psd1
StepHypRef Expression
1 psd1.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2735 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . . . 5 (+g𝑆) = (+g𝑆)
4 eqid 2735 . . . . 5 (.r𝑆) = (.r𝑆)
5 psd1.r . . . . 5 (𝜑𝑅 ∈ CRing)
6 psd1.x . . . . 5 (𝜑𝑋𝐼)
7 psd1.i . . . . . . . 8 (𝜑𝐼𝑉)
81, 7, 5psrcrng 22010 . . . . . . 7 (𝜑𝑆 ∈ CRing)
98crngringd 20264 . . . . . 6 (𝜑𝑆 ∈ Ring)
10 psd1.u . . . . . . 7 1 = (1r𝑆)
112, 10ringidcl 20280 . . . . . 6 (𝑆 ∈ Ring → 1 ∈ (Base‘𝑆))
129, 11syl 17 . . . . 5 (𝜑1 ∈ (Base‘𝑆))
131, 2, 3, 4, 5, 6, 12, 12psdmul 22188 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘( 1 (.r𝑆) 1 )) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 )(+g𝑆)( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))))
142, 4, 10, 9, 12ringlidmd 20286 . . . . 5 (𝜑 → ( 1 (.r𝑆) 1 ) = 1 )
1514fveq2d 6911 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘( 1 (.r𝑆) 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
165crnggrpd 20265 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
1716grpmgmd 18992 . . . . . . 7 (𝜑𝑅 ∈ Mgm)
181, 2, 17, 6, 12psdcl 22183 . . . . . 6 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ∈ (Base‘𝑆))
192, 4, 10, 9, 18ringridmd 20287 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 ) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
202, 4, 10, 9, 18ringlidmd 20286 . . . . 5 (𝜑 → ( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
2119, 20oveq12d 7449 . . . 4 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(.r𝑆) 1 )(+g𝑆)( 1 (.r𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2213, 15, 213eqtr3rd 2784 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
238crnggrpd 20265 . . . 4 (𝜑𝑆 ∈ Grp)
24 psd1.z . . . . 5 0 = (0g𝑆)
252, 3, 24grpid 19006 . . . 4 ((𝑆 ∈ Grp ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ∈ (Base‘𝑆)) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ↔ 0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2623, 18, 25syl2anc 584 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )(+g𝑆)(((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )) = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) ↔ 0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 )))
2722, 26mpbid 232 . 2 (𝜑0 = (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ))
2827eqcomd 2741 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  1rcur 20199  Ringcrg 20251  CRingccrg 20252   mPwSer cmps 21942   mPSDer cpsd 22152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-psr 21947  df-psd 22178
This theorem is referenced by:  psdascl  22190
  Copyright terms: Public domain W3C validator