Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem2 Structured version   Visualization version   GIF version

Theorem heiborlem2 37813
Description: Lemma for heibor 37822. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heiborlem2.5 𝐴 ∈ V
heiborlem2.6 𝐶 ∈ V
Assertion
Ref Expression
heiborlem2 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
Distinct variable groups:   𝑦,𝑛,𝐴   𝑢,𝑛,𝐹,𝑦   𝑣,𝑛,𝐷,𝑢,𝑦   𝐵,𝑛,𝑢,𝑣,𝑦   𝑛,𝐽,𝑢,𝑣,𝑦   𝑈,𝑛,𝑢,𝑣,𝑦   𝐶,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣)   𝐺(𝑦,𝑣,𝑢,𝑛)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem2
StepHypRef Expression
1 heiborlem2.5 . 2 𝐴 ∈ V
2 heiborlem2.6 . 2 𝐶 ∈ V
3 eleq1 2817 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝑛)))
4 oveq1 7397 . . . 4 (𝑦 = 𝐴 → (𝑦𝐵𝑛) = (𝐴𝐵𝑛))
54eleq1d 2814 . . 3 (𝑦 = 𝐴 → ((𝑦𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝑛) ∈ 𝐾))
63, 53anbi23d 1441 . 2 (𝑦 = 𝐴 → ((𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾) ↔ (𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾)))
7 eleq1 2817 . . 3 (𝑛 = 𝐶 → (𝑛 ∈ ℕ0𝐶 ∈ ℕ0))
8 fveq2 6861 . . . 4 (𝑛 = 𝐶 → (𝐹𝑛) = (𝐹𝐶))
98eleq2d 2815 . . 3 (𝑛 = 𝐶 → (𝐴 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝐶)))
10 oveq2 7398 . . . 4 (𝑛 = 𝐶 → (𝐴𝐵𝑛) = (𝐴𝐵𝐶))
1110eleq1d 2814 . . 3 (𝑛 = 𝐶 → ((𝐴𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝐶) ∈ 𝐾))
127, 9, 113anbi123d 1438 . 2 (𝑛 = 𝐶 → ((𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾) ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)))
13 heibor.4 . 2 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
141, 2, 6, 12, 13brab 5506 1 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  {copab 5172  cfv 6514  (class class class)co 7390  Fincfn 8921  0cn0 12449  MetOpencmopn 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  heiborlem3  37814  heiborlem5  37816  heiborlem6  37817  heiborlem8  37819  heiborlem10  37821
  Copyright terms: Public domain W3C validator