![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem2 | Structured version Visualization version GIF version |
Description: Lemma for heibor 37781. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heiborlem2.5 | ⊢ 𝐴 ∈ V |
heiborlem2.6 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
heiborlem2 | ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heiborlem2.5 | . 2 ⊢ 𝐴 ∈ V | |
2 | heiborlem2.6 | . 2 ⊢ 𝐶 ∈ V | |
3 | eleq1 2832 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝐹‘𝑛) ↔ 𝐴 ∈ (𝐹‘𝑛))) | |
4 | oveq1 7455 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐵𝑛) = (𝐴𝐵𝑛)) | |
5 | 4 | eleq1d 2829 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝑛) ∈ 𝐾)) |
6 | 3, 5 | 3anbi23d 1439 | . 2 ⊢ (𝑦 = 𝐴 → ((𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾) ↔ (𝑛 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾))) |
7 | eleq1 2832 | . . 3 ⊢ (𝑛 = 𝐶 → (𝑛 ∈ ℕ0 ↔ 𝐶 ∈ ℕ0)) | |
8 | fveq2 6920 | . . . 4 ⊢ (𝑛 = 𝐶 → (𝐹‘𝑛) = (𝐹‘𝐶)) | |
9 | 8 | eleq2d 2830 | . . 3 ⊢ (𝑛 = 𝐶 → (𝐴 ∈ (𝐹‘𝑛) ↔ 𝐴 ∈ (𝐹‘𝐶))) |
10 | oveq2 7456 | . . . 4 ⊢ (𝑛 = 𝐶 → (𝐴𝐵𝑛) = (𝐴𝐵𝐶)) | |
11 | 10 | eleq1d 2829 | . . 3 ⊢ (𝑛 = 𝐶 → ((𝐴𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝐶) ∈ 𝐾)) |
12 | 7, 9, 11 | 3anbi123d 1436 | . 2 ⊢ (𝑛 = 𝐶 → ((𝑛 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾) ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))) |
13 | heibor.4 | . 2 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
14 | 1, 2, 6, 12, 13 | brab 5562 | 1 ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 {copab 5228 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℕ0cn0 12553 MetOpencmopn 21377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: heiborlem3 37773 heiborlem5 37775 heiborlem6 37776 heiborlem8 37778 heiborlem10 37780 |
Copyright terms: Public domain | W3C validator |