Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem2 Structured version   Visualization version   GIF version

Theorem heiborlem2 35130
 Description: Lemma for heibor 35139. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heiborlem2.5 𝐴 ∈ V
heiborlem2.6 𝐶 ∈ V
Assertion
Ref Expression
heiborlem2 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
Distinct variable groups:   𝑦,𝑛,𝐴   𝑢,𝑛,𝐹,𝑦   𝑣,𝑛,𝐷,𝑢,𝑦   𝐵,𝑛,𝑢,𝑣,𝑦   𝑛,𝐽,𝑢,𝑣,𝑦   𝑈,𝑛,𝑢,𝑣,𝑦   𝐶,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣)   𝐺(𝑦,𝑣,𝑢,𝑛)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem2
StepHypRef Expression
1 heiborlem2.5 . 2 𝐴 ∈ V
2 heiborlem2.6 . 2 𝐶 ∈ V
3 eleq1 2899 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝑛)))
4 oveq1 7137 . . . 4 (𝑦 = 𝐴 → (𝑦𝐵𝑛) = (𝐴𝐵𝑛))
54eleq1d 2896 . . 3 (𝑦 = 𝐴 → ((𝑦𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝑛) ∈ 𝐾))
63, 53anbi23d 1436 . 2 (𝑦 = 𝐴 → ((𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾) ↔ (𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾)))
7 eleq1 2899 . . 3 (𝑛 = 𝐶 → (𝑛 ∈ ℕ0𝐶 ∈ ℕ0))
8 fveq2 6643 . . . 4 (𝑛 = 𝐶 → (𝐹𝑛) = (𝐹𝐶))
98eleq2d 2897 . . 3 (𝑛 = 𝐶 → (𝐴 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝐶)))
10 oveq2 7138 . . . 4 (𝑛 = 𝐶 → (𝐴𝐵𝑛) = (𝐴𝐵𝐶))
1110eleq1d 2896 . . 3 (𝑛 = 𝐶 → ((𝐴𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝐶) ∈ 𝐾))
127, 9, 113anbi123d 1433 . 2 (𝑛 = 𝐶 → ((𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾) ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)))
13 heibor.4 . 2 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
141, 2, 6, 12, 13brab 5403 1 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  {cab 2799  ∃wrex 3127  Vcvv 3471   ∩ cin 3909   ⊆ wss 3910  𝒫 cpw 4512  ∪ cuni 4811   class class class wbr 5039  {copab 5101  ‘cfv 6328  (class class class)co 7130  Fincfn 8484  ℕ0cn0 11875  MetOpencmopn 20510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-iota 6287  df-fv 6336  df-ov 7133 This theorem is referenced by:  heiborlem3  35131  heiborlem5  35133  heiborlem6  35134  heiborlem8  35136  heiborlem10  35138
 Copyright terms: Public domain W3C validator