| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37822. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heiborlem2.5 | ⊢ 𝐴 ∈ V |
| heiborlem2.6 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| heiborlem2 | ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heiborlem2.5 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | heiborlem2.6 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | eleq1 2817 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝐹‘𝑛) ↔ 𝐴 ∈ (𝐹‘𝑛))) | |
| 4 | oveq1 7397 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐵𝑛) = (𝐴𝐵𝑛)) | |
| 5 | 4 | eleq1d 2814 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝑛) ∈ 𝐾)) |
| 6 | 3, 5 | 3anbi23d 1441 | . 2 ⊢ (𝑦 = 𝐴 → ((𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾) ↔ (𝑛 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾))) |
| 7 | eleq1 2817 | . . 3 ⊢ (𝑛 = 𝐶 → (𝑛 ∈ ℕ0 ↔ 𝐶 ∈ ℕ0)) | |
| 8 | fveq2 6861 | . . . 4 ⊢ (𝑛 = 𝐶 → (𝐹‘𝑛) = (𝐹‘𝐶)) | |
| 9 | 8 | eleq2d 2815 | . . 3 ⊢ (𝑛 = 𝐶 → (𝐴 ∈ (𝐹‘𝑛) ↔ 𝐴 ∈ (𝐹‘𝐶))) |
| 10 | oveq2 7398 | . . . 4 ⊢ (𝑛 = 𝐶 → (𝐴𝐵𝑛) = (𝐴𝐵𝐶)) | |
| 11 | 10 | eleq1d 2814 | . . 3 ⊢ (𝑛 = 𝐶 → ((𝐴𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝐶) ∈ 𝐾)) |
| 12 | 7, 9, 11 | 3anbi123d 1438 | . 2 ⊢ (𝑛 = 𝐶 → ((𝑛 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾) ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))) |
| 13 | heibor.4 | . 2 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
| 14 | 1, 2, 6, 12, 13 | brab 5506 | 1 ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 class class class wbr 5110 {copab 5172 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℕ0cn0 12449 MetOpencmopn 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: heiborlem3 37814 heiborlem5 37816 heiborlem6 37817 heiborlem8 37819 heiborlem10 37821 |
| Copyright terms: Public domain | W3C validator |