Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem1 Structured version   Visualization version   GIF version

Theorem heiborlem1 35969
Description: Lemma for heibor 35979. We work with a fixed open cover 𝑈 throughout. The set 𝐾 is the set of all subsets of 𝑋 that admit no finite subcover of 𝑈. (We wish to prove that 𝐾 is empty.) If a set 𝐶 has no finite subcover, then any finite cover of 𝐶 must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heiborlem1.4 𝐵 ∈ V
Assertion
Ref Expression
heiborlem1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑢,𝑣,𝐷   𝑢,𝐵,𝑣   𝑢,𝐽,𝑣,𝑥   𝑢,𝑈,𝑣,𝑥   𝑢,𝐶,𝑣   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑥)   𝐶(𝑥)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 heiborlem1.4 . . . . . . . 8 𝐵 ∈ V
2 sseq1 3946 . . . . . . . . . 10 (𝑢 = 𝐵 → (𝑢 𝑣𝐵 𝑣))
32rexbidv 3226 . . . . . . . . 9 (𝑢 = 𝐵 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
43notbid 318 . . . . . . . 8 (𝑢 = 𝐵 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
5 heibor.3 . . . . . . . 8 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
61, 4, 5elab2 3613 . . . . . . 7 (𝐵𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
76con2bii 358 . . . . . 6 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ¬ 𝐵𝐾)
87ralbii 3092 . . . . 5 (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ∀𝑥𝐴 ¬ 𝐵𝐾)
9 ralnex 3167 . . . . 5 (∀𝑥𝐴 ¬ 𝐵𝐾 ↔ ¬ ∃𝑥𝐴 𝐵𝐾)
108, 9bitr2i 275 . . . 4 (¬ ∃𝑥𝐴 𝐵𝐾 ↔ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
11 unieq 4850 . . . . . . . . 9 (𝑣 = (𝑡𝑥) → 𝑣 = (𝑡𝑥))
1211sseq2d 3953 . . . . . . . 8 (𝑣 = (𝑡𝑥) → (𝐵 𝑣𝐵 (𝑡𝑥)))
1312ac6sfi 9058 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣) → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)))
1413ex 413 . . . . . 6 (𝐴 ∈ Fin → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
1514adantr 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
16 sseq1 3946 . . . . . . . . . . . 12 (𝑢 = 𝐶 → (𝑢 𝑣𝐶 𝑣))
1716rexbidv 3226 . . . . . . . . . . 11 (𝑢 = 𝐶 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1817notbid 318 . . . . . . . . . 10 (𝑢 = 𝐶 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1918, 5elab2g 3611 . . . . . . . . 9 (𝐶𝐾 → (𝐶𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
2019ibi 266 . . . . . . . 8 (𝐶𝐾 → ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
21 frn 6607 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
2221ad2antrl 725 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
23 inss1 4162 . . . . . . . . . . . . . 14 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
2422, 23sstrdi 3933 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ 𝒫 𝑈)
25 sspwuni 5029 . . . . . . . . . . . . 13 (ran 𝑡 ⊆ 𝒫 𝑈 ran 𝑡𝑈)
2624, 25sylib 217 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡𝑈)
27 vex 3436 . . . . . . . . . . . . . . 15 𝑡 ∈ V
2827rnex 7759 . . . . . . . . . . . . . 14 ran 𝑡 ∈ V
2928uniex 7594 . . . . . . . . . . . . 13 ran 𝑡 ∈ V
3029elpw 4537 . . . . . . . . . . . 12 ( ran 𝑡 ∈ 𝒫 𝑈 ran 𝑡𝑈)
3126, 30sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ 𝒫 𝑈)
32 ffn 6600 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → 𝑡 Fn 𝐴)
3332ad2antrl 725 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡 Fn 𝐴)
34 dffn4 6694 . . . . . . . . . . . . . 14 (𝑡 Fn 𝐴𝑡:𝐴onto→ran 𝑡)
3533, 34sylib 217 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡:𝐴onto→ran 𝑡)
36 fofi 9105 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴onto→ran 𝑡) → ran 𝑡 ∈ Fin)
3735, 36syldan 591 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
38 inss2 4163 . . . . . . . . . . . . 13 (𝒫 𝑈 ∩ Fin) ⊆ Fin
3922, 38sstrdi 3933 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ Fin)
40 unifi 9108 . . . . . . . . . . . 12 ((ran 𝑡 ∈ Fin ∧ ran 𝑡 ⊆ Fin) → ran 𝑡 ∈ Fin)
4137, 39, 40syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
4231, 41elind 4128 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
4342adantlr 712 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
44 simplr 766 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 𝑥𝐴 𝐵)
45 fnfvelrn 6958 . . . . . . . . . . . . . . . . . 18 ((𝑡 Fn 𝐴𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4632, 45sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4746adantll 711 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
48 elssuni 4871 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ∈ ran 𝑡 → (𝑡𝑥) ⊆ ran 𝑡)
49 uniss 4847 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ⊆ ran 𝑡 (𝑡𝑥) ⊆ ran 𝑡)
5047, 48, 493syl 18 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ⊆ ran 𝑡)
51 sstr2 3928 . . . . . . . . . . . . . . 15 (𝐵 (𝑡𝑥) → ( (𝑡𝑥) ⊆ ran 𝑡𝐵 ran 𝑡))
5250, 51syl5com 31 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝐵 (𝑡𝑥) → 𝐵 ran 𝑡))
5352ralimdva 3108 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) → (∀𝑥𝐴 𝐵 (𝑡𝑥) → ∀𝑥𝐴 𝐵 ran 𝑡))
5453impr 455 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∀𝑥𝐴 𝐵 ran 𝑡)
55 iunss 4975 . . . . . . . . . . . 12 ( 𝑥𝐴 𝐵 ran 𝑡 ↔ ∀𝑥𝐴 𝐵 ran 𝑡)
5654, 55sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5756adantlr 712 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5844, 57sstrd 3931 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 ran 𝑡)
59 unieq 4850 . . . . . . . . . . 11 (𝑣 = ran 𝑡 𝑣 = ran 𝑡)
6059sseq2d 3953 . . . . . . . . . 10 (𝑣 = ran 𝑡 → (𝐶 𝑣𝐶 ran 𝑡))
6160rspcev 3561 . . . . . . . . 9 (( ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐶 ran 𝑡) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6243, 58, 61syl2anc 584 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6320, 62nsyl3 138 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ¬ 𝐶𝐾)
6463ex 413 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6564exlimdv 1936 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6615, 65syld 47 . . . 4 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ¬ 𝐶𝐾))
6710, 66syl5bi 241 . . 3 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (¬ ∃𝑥𝐴 𝐵𝐾 → ¬ 𝐶𝐾))
6867con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (𝐶𝐾 → ∃𝑥𝐴 𝐵𝐾))
69683impia 1116 1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839   ciun 4924  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  Fincfn 8733  MetOpencmopn 20587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737
This theorem is referenced by:  heiborlem3  35971  heiborlem10  35978
  Copyright terms: Public domain W3C validator