Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem1 Structured version   Visualization version   GIF version

Theorem heiborlem1 35248
Description: Lemma for heibor 35258. We work with a fixed open cover 𝑈 throughout. The set 𝐾 is the set of all subsets of 𝑋 that admit no finite subcover of 𝑈. (We wish to prove that 𝐾 is empty.) If a set 𝐶 has no finite subcover, then any finite cover of 𝐶 must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heiborlem1.4 𝐵 ∈ V
Assertion
Ref Expression
heiborlem1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑢,𝑣,𝐷   𝑢,𝐵,𝑣   𝑢,𝐽,𝑣,𝑥   𝑢,𝑈,𝑣,𝑥   𝑢,𝐶,𝑣   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑥)   𝐶(𝑥)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 heiborlem1.4 . . . . . . . 8 𝐵 ∈ V
2 sseq1 3943 . . . . . . . . . 10 (𝑢 = 𝐵 → (𝑢 𝑣𝐵 𝑣))
32rexbidv 3259 . . . . . . . . 9 (𝑢 = 𝐵 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
43notbid 321 . . . . . . . 8 (𝑢 = 𝐵 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣))
5 heibor.3 . . . . . . . 8 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
61, 4, 5elab2 3621 . . . . . . 7 (𝐵𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
76con2bii 361 . . . . . 6 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ¬ 𝐵𝐾)
87ralbii 3136 . . . . 5 (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 ↔ ∀𝑥𝐴 ¬ 𝐵𝐾)
9 ralnex 3202 . . . . 5 (∀𝑥𝐴 ¬ 𝐵𝐾 ↔ ¬ ∃𝑥𝐴 𝐵𝐾)
108, 9bitr2i 279 . . . 4 (¬ ∃𝑥𝐴 𝐵𝐾 ↔ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣)
11 unieq 4814 . . . . . . . . 9 (𝑣 = (𝑡𝑥) → 𝑣 = (𝑡𝑥))
1211sseq2d 3950 . . . . . . . 8 (𝑣 = (𝑡𝑥) → (𝐵 𝑣𝐵 (𝑡𝑥)))
1312ac6sfi 8750 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣) → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)))
1413ex 416 . . . . . 6 (𝐴 ∈ Fin → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
1514adantr 484 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))))
16 sseq1 3943 . . . . . . . . . . . 12 (𝑢 = 𝐶 → (𝑢 𝑣𝐶 𝑣))
1716rexbidv 3259 . . . . . . . . . . 11 (𝑢 = 𝐶 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1817notbid 321 . . . . . . . . . 10 (𝑢 = 𝐶 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
1918, 5elab2g 3619 . . . . . . . . 9 (𝐶𝐾 → (𝐶𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣))
2019ibi 270 . . . . . . . 8 (𝐶𝐾 → ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
21 frn 6497 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
2221ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ (𝒫 𝑈 ∩ Fin))
23 inss1 4158 . . . . . . . . . . . . . 14 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
2422, 23sstrdi 3930 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ 𝒫 𝑈)
25 sspwuni 4988 . . . . . . . . . . . . 13 (ran 𝑡 ⊆ 𝒫 𝑈 ran 𝑡𝑈)
2624, 25sylib 221 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡𝑈)
27 vex 3447 . . . . . . . . . . . . . . 15 𝑡 ∈ V
2827rnex 7603 . . . . . . . . . . . . . 14 ran 𝑡 ∈ V
2928uniex 7451 . . . . . . . . . . . . 13 ran 𝑡 ∈ V
3029elpw 4504 . . . . . . . . . . . 12 ( ran 𝑡 ∈ 𝒫 𝑈 ran 𝑡𝑈)
3126, 30sylibr 237 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ 𝒫 𝑈)
32 ffn 6491 . . . . . . . . . . . . . . 15 (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) → 𝑡 Fn 𝐴)
3332ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡 Fn 𝐴)
34 dffn4 6575 . . . . . . . . . . . . . 14 (𝑡 Fn 𝐴𝑡:𝐴onto→ran 𝑡)
3533, 34sylib 221 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑡:𝐴onto→ran 𝑡)
36 fofi 8798 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴onto→ran 𝑡) → ran 𝑡 ∈ Fin)
3735, 36syldan 594 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
38 inss2 4159 . . . . . . . . . . . . 13 (𝒫 𝑈 ∩ Fin) ⊆ Fin
3922, 38sstrdi 3930 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ⊆ Fin)
40 unifi 8801 . . . . . . . . . . . 12 ((ran 𝑡 ∈ Fin ∧ ran 𝑡 ⊆ Fin) → ran 𝑡 ∈ Fin)
4137, 39, 40syl2anc 587 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ Fin)
4231, 41elind 4124 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
4342adantlr 714 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin))
44 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 𝑥𝐴 𝐵)
45 fnfvelrn 6829 . . . . . . . . . . . . . . . . . 18 ((𝑡 Fn 𝐴𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4632, 45sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
4746adantll 713 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ∈ ran 𝑡)
48 elssuni 4833 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ∈ ran 𝑡 → (𝑡𝑥) ⊆ ran 𝑡)
49 uniss 4811 . . . . . . . . . . . . . . . 16 ((𝑡𝑥) ⊆ ran 𝑡 (𝑡𝑥) ⊆ ran 𝑡)
5047, 48, 493syl 18 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝑡𝑥) ⊆ ran 𝑡)
51 sstr2 3925 . . . . . . . . . . . . . . 15 (𝐵 (𝑡𝑥) → ( (𝑡𝑥) ⊆ ran 𝑡𝐵 ran 𝑡))
5250, 51syl5com 31 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) ∧ 𝑥𝐴) → (𝐵 (𝑡𝑥) → 𝐵 ran 𝑡))
5352ralimdva 3147 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin)) → (∀𝑥𝐴 𝐵 (𝑡𝑥) → ∀𝑥𝐴 𝐵 ran 𝑡))
5453impr 458 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∀𝑥𝐴 𝐵 ran 𝑡)
55 iunss 4935 . . . . . . . . . . . 12 ( 𝑥𝐴 𝐵 ran 𝑡 ↔ ∀𝑥𝐴 𝐵 ran 𝑡)
5654, 55sylibr 237 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5756adantlr 714 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝑥𝐴 𝐵 ran 𝑡)
5844, 57sstrd 3928 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → 𝐶 ran 𝑡)
59 unieq 4814 . . . . . . . . . . 11 (𝑣 = ran 𝑡 𝑣 = ran 𝑡)
6059sseq2d 3950 . . . . . . . . . 10 (𝑣 = ran 𝑡 → (𝐶 𝑣𝐶 ran 𝑡))
6160rspcev 3574 . . . . . . . . 9 (( ran 𝑡 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐶 ran 𝑡) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6243, 58, 61syl2anc 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐶 𝑣)
6320, 62nsyl3 140 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) ∧ (𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥))) → ¬ 𝐶𝐾)
6463ex 416 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → ((𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6564exlimdv 1934 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∃𝑡(𝑡:𝐴⟶(𝒫 𝑈 ∩ Fin) ∧ ∀𝑥𝐴 𝐵 (𝑡𝑥)) → ¬ 𝐶𝐾))
6615, 65syld 47 . . . 4 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (∀𝑥𝐴𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝐵 𝑣 → ¬ 𝐶𝐾))
6710, 66syl5bi 245 . . 3 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (¬ ∃𝑥𝐴 𝐵𝐾 → ¬ 𝐶𝐾))
6867con4d 115 . 2 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵) → (𝐶𝐾 → ∃𝑥𝐴 𝐵𝐾))
69683impia 1114 1 ((𝐴 ∈ Fin ∧ 𝐶 𝑥𝐴 𝐵𝐶𝐾) → ∃𝑥𝐴 𝐵𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2112  {cab 2779  wral 3109  wrex 3110  Vcvv 3444  cin 3883  wss 3884  𝒫 cpw 4500   cuni 4803   ciun 4884  ran crn 5524   Fn wfn 6323  wf 6324  ontowfo 6326  cfv 6328  Fincfn 8496  MetOpencmopn 20085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-fin 8500
This theorem is referenced by:  heiborlem3  35250  heiborlem10  35257
  Copyright terms: Public domain W3C validator