Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem5 Structured version   Visualization version   GIF version

Theorem heiborlem5 37816
Description: Lemma for heibor 37822. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25367. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem5 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12540 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 inss1 4248 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
3 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
43ffvelcdmda 7111 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ (𝒫 𝑋 ∩ Fin))
52, 4sselid 3996 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
65elpwid 4617 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
7 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.6 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
167, 8, 9, 10, 11, 3, 12, 13, 14, 15heiborlem4 37815 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
17 fvex 6927 . . . . . . . . . 10 (𝑆𝑘) ∈ V
18 vex 3485 . . . . . . . . . 10 𝑘 ∈ V
197, 8, 9, 17, 18heiborlem2 37813 . . . . . . . . 9 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
2019simp2bi 1147 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
2116, 20syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
226, 21sseldd 3999 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
231, 22sylan2 593 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ 𝑋)
2423ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋)
25 fveq2 6914 . . . . . 6 (𝑘 = 𝑛 → (𝑆𝑘) = (𝑆𝑛))
2625eleq1d 2826 . . . . 5 (𝑘 = 𝑛 → ((𝑆𝑘) ∈ 𝑋 ↔ (𝑆𝑛) ∈ 𝑋))
2726cbvralvw 3237 . . . 4 (∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
2824, 27sylib 218 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
29 3re 12353 . . . . . . 7 3 ∈ ℝ
30 3pos 12378 . . . . . . 7 0 < 3
3129, 30elrpii 13044 . . . . . 6 3 ∈ ℝ+
32 2nn 12346 . . . . . . . 8 2 ∈ ℕ
33 nnnn0 12540 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
34 nnexpcl 14121 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
3532, 33, 34sylancr 587 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
3635nnrpd 13082 . . . . . 6 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
37 rpdivcl 13067 . . . . . 6 ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+)
3831, 36, 37sylancr 587 . . . . 5 (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+)
39 opelxpi 5730 . . . . . 6 (((𝑆𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4039expcom 413 . . . . 5 ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4138, 40syl 17 . . . 4 (𝑛 ∈ ℕ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4241ralimia 3080 . . 3 (∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4328, 42syl 17 . 2 (𝜑 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
44 heibor.12 . . 3 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
4544fmpt 7137 . 2 (∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+))
4643, 45sylib 218 1 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  {cab 2714  wral 3061  wrex 3070  cin 3965  wss 3966  ifcif 4534  𝒫 cpw 4608  cop 4640   cuni 4915   ciun 4999   class class class wbr 5151  {copab 5213  cmpt 5234   × cxp 5691  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  2nd c2nd 8021  Fincfn 8993  0cc0 11162  1c1 11163   + caddc 11165  cmin 11499   / cdiv 11927  cn 12273  2c2 12328  3c3 12329  0cn0 12533  +crp 13041  seqcseq 14048  cexp 14108  ballcbl 21378  MetOpencmopn 21381  CMetccmet 25313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-seq 14049  df-exp 14109
This theorem is referenced by:  heiborlem8  37819  heiborlem9  37820
  Copyright terms: Public domain W3C validator