| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37808. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25241. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
| heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| Ref | Expression |
|---|---|
| heiborlem5 | ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12425 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 2 | inss1 4196 | . . . . . . . . 9 ⊢ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋 | |
| 3 | heibor.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
| 4 | 3 | ffvelcdmda 7038 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ (𝒫 𝑋 ∩ Fin)) |
| 5 | 2, 4 | sselid 3941 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
| 6 | 5 | elpwid 4568 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
| 7 | heibor.1 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
| 9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
| 10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
| 11 | heibor.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
| 13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
| 14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
| 15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
| 16 | 7, 8, 9, 10, 11, 3, 12, 13, 14, 15 | heiborlem4 37801 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
| 17 | fvex 6853 | . . . . . . . . . 10 ⊢ (𝑆‘𝑘) ∈ V | |
| 18 | vex 3448 | . . . . . . . . . 10 ⊢ 𝑘 ∈ V | |
| 19 | 7, 8, 9, 17, 18 | heiborlem2 37799 | . . . . . . . . 9 ⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
| 20 | 19 | simp2bi 1146 | . . . . . . . 8 ⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 22 | 6, 21 | sseldd 3944 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
| 23 | 1, 22 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ 𝑋) |
| 24 | 23 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋) |
| 25 | fveq2 6840 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) | |
| 26 | 25 | eleq1d 2813 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) ∈ 𝑋 ↔ (𝑆‘𝑛) ∈ 𝑋)) |
| 27 | 26 | cbvralvw 3213 | . . . 4 ⊢ (∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
| 28 | 24, 27 | sylib 218 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
| 29 | 3re 12242 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
| 30 | 3pos 12267 | . . . . . . 7 ⊢ 0 < 3 | |
| 31 | 29, 30 | elrpii 12930 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
| 32 | 2nn 12235 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 33 | nnnn0 12425 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 34 | nnexpcl 14015 | . . . . . . . 8 ⊢ ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ) | |
| 35 | 32, 33, 34 | sylancr 587 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ) |
| 36 | 35 | nnrpd 12969 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+) |
| 37 | rpdivcl 12954 | . . . . . 6 ⊢ ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+) | |
| 38 | 31, 36, 37 | sylancr 587 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+) |
| 39 | opelxpi 5668 | . . . . . 6 ⊢ (((𝑆‘𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) | |
| 40 | 39 | expcom 413 | . . . . 5 ⊢ ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
| 41 | 38, 40 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
| 42 | 41 | ralimia 3063 | . . 3 ⊢ (∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
| 43 | 28, 42 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
| 44 | heibor.12 | . . 3 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
| 45 | 44 | fmpt 7064 | . 2 ⊢ (∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| 46 | 43, 45 | sylib 218 | 1 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ifcif 4484 𝒫 cpw 4559 〈cop 4591 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 2nd c2nd 7946 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℕ0cn0 12418 ℝ+crp 12927 seqcseq 13942 ↑cexp 14002 ballcbl 21283 MetOpencmopn 21286 CMetccmet 25187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: heiborlem8 37805 heiborlem9 37806 |
| Copyright terms: Public domain | W3C validator |