![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem5 | Structured version Visualization version GIF version |
Description: Lemma for heibor 37822. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25367. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
Ref | Expression |
---|---|
heiborlem5 | ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12540 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
2 | inss1 4248 | . . . . . . . . 9 ⊢ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋 | |
3 | heibor.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
4 | 3 | ffvelcdmda 7111 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ (𝒫 𝑋 ∩ Fin)) |
5 | 2, 4 | sselid 3996 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
6 | 5 | elpwid 4617 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
7 | heibor.1 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
11 | heibor.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
16 | 7, 8, 9, 10, 11, 3, 12, 13, 14, 15 | heiborlem4 37815 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
17 | fvex 6927 | . . . . . . . . . 10 ⊢ (𝑆‘𝑘) ∈ V | |
18 | vex 3485 | . . . . . . . . . 10 ⊢ 𝑘 ∈ V | |
19 | 7, 8, 9, 17, 18 | heiborlem2 37813 | . . . . . . . . 9 ⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
20 | 19 | simp2bi 1147 | . . . . . . . 8 ⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
22 | 6, 21 | sseldd 3999 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
23 | 1, 22 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ 𝑋) |
24 | 23 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋) |
25 | fveq2 6914 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) | |
26 | 25 | eleq1d 2826 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) ∈ 𝑋 ↔ (𝑆‘𝑛) ∈ 𝑋)) |
27 | 26 | cbvralvw 3237 | . . . 4 ⊢ (∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
28 | 24, 27 | sylib 218 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
29 | 3re 12353 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
30 | 3pos 12378 | . . . . . . 7 ⊢ 0 < 3 | |
31 | 29, 30 | elrpii 13044 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
32 | 2nn 12346 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
33 | nnnn0 12540 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
34 | nnexpcl 14121 | . . . . . . . 8 ⊢ ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ) | |
35 | 32, 33, 34 | sylancr 587 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ) |
36 | 35 | nnrpd 13082 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+) |
37 | rpdivcl 13067 | . . . . . 6 ⊢ ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+) | |
38 | 31, 36, 37 | sylancr 587 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+) |
39 | opelxpi 5730 | . . . . . 6 ⊢ (((𝑆‘𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) | |
40 | 39 | expcom 413 | . . . . 5 ⊢ ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
41 | 38, 40 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
42 | 41 | ralimia 3080 | . . 3 ⊢ (∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
43 | 28, 42 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
44 | heibor.12 | . . 3 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
45 | 44 | fmpt 7137 | . 2 ⊢ (∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+)) |
46 | 43, 45 | sylib 218 | 1 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 ∩ cin 3965 ⊆ wss 3966 ifcif 4534 𝒫 cpw 4608 〈cop 4640 ∪ cuni 4915 ∪ ciun 4999 class class class wbr 5151 {copab 5213 ↦ cmpt 5234 × cxp 5691 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 2nd c2nd 8021 Fincfn 8993 0cc0 11162 1c1 11163 + caddc 11165 − cmin 11499 / cdiv 11927 ℕcn 12273 2c2 12328 3c3 12329 ℕ0cn0 12533 ℝ+crp 13041 seqcseq 14048 ↑cexp 14108 ballcbl 21378 MetOpencmopn 21381 CMetccmet 25313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-seq 14049 df-exp 14109 |
This theorem is referenced by: heiborlem8 37819 heiborlem9 37820 |
Copyright terms: Public domain | W3C validator |