Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem5 Structured version   Visualization version   GIF version

Theorem heiborlem5 35252
 Description: Lemma for heibor 35258. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 23916. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem5 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑚,𝑀,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11896 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 inss1 4158 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
3 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
43ffvelrnda 6832 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ (𝒫 𝑋 ∩ Fin))
52, 4sseldi 3916 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
65elpwid 4511 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
7 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
8 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
9 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
10 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
11 heibor.6 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
12 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
13 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
14 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
15 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
167, 8, 9, 10, 11, 3, 12, 13, 14, 15heiborlem4 35251 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
17 fvex 6662 . . . . . . . . . 10 (𝑆𝑘) ∈ V
18 vex 3447 . . . . . . . . . 10 𝑘 ∈ V
197, 8, 9, 17, 18heiborlem2 35249 . . . . . . . . 9 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
2019simp2bi 1143 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
2116, 20syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
226, 21sseldd 3919 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
231, 22sylan2 595 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ 𝑋)
2423ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋)
25 fveq2 6649 . . . . . 6 (𝑘 = 𝑛 → (𝑆𝑘) = (𝑆𝑛))
2625eleq1d 2877 . . . . 5 (𝑘 = 𝑛 → ((𝑆𝑘) ∈ 𝑋 ↔ (𝑆𝑛) ∈ 𝑋))
2726cbvralvw 3399 . . . 4 (∀𝑘 ∈ ℕ (𝑆𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
2824, 27sylib 221 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋)
29 3re 11709 . . . . . . 7 3 ∈ ℝ
30 3pos 11734 . . . . . . 7 0 < 3
3129, 30elrpii 12384 . . . . . 6 3 ∈ ℝ+
32 2nn 11702 . . . . . . . 8 2 ∈ ℕ
33 nnnn0 11896 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
34 nnexpcl 13442 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
3532, 33, 34sylancr 590 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
3635nnrpd 12421 . . . . . 6 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
37 rpdivcl 12406 . . . . . 6 ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+)
3831, 36, 37sylancr 590 . . . . 5 (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+)
39 opelxpi 5560 . . . . . 6 (((𝑆𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4039expcom 417 . . . . 5 ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4138, 40syl 17 . . . 4 (𝑛 ∈ ℕ → ((𝑆𝑛) ∈ 𝑋 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+)))
4241ralimia 3129 . . 3 (∀𝑛 ∈ ℕ (𝑆𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
4328, 42syl 17 . 2 (𝜑 → ∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+))
44 heibor.12 . . 3 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
4544fmpt 6855 . 2 (∀𝑛 ∈ ℕ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+))
4643, 45sylib 221 1 (𝜑𝑀:ℕ⟶(𝑋 × ℝ+))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  {cab 2779  ∀wral 3109  ∃wrex 3110   ∩ cin 3883   ⊆ wss 3884  ifcif 4428  𝒫 cpw 4500  ⟨cop 4534  ∪ cuni 4803  ∪ ciun 4884   class class class wbr 5033  {copab 5095   ↦ cmpt 5113   × cxp 5521  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  2nd c2nd 7674  Fincfn 8496  0cc0 10530  1c1 10531   + caddc 10533   − cmin 10863   / cdiv 11290  ℕcn 11629  2c2 11684  3c3 11685  ℕ0cn0 11889  ℝ+crp 12381  seqcseq 13368  ↑cexp 13429  ballcbl 20082  MetOpencmopn 20085  CMetccmet 23862 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430 This theorem is referenced by:  heiborlem8  35255  heiborlem9  35256
 Copyright terms: Public domain W3C validator