| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37787. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25278. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
| heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| Ref | Expression |
|---|---|
| heiborlem5 | ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12516 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 2 | inss1 4217 | . . . . . . . . 9 ⊢ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋 | |
| 3 | heibor.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
| 4 | 3 | ffvelcdmda 7084 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ (𝒫 𝑋 ∩ Fin)) |
| 5 | 2, 4 | sselid 3961 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
| 6 | 5 | elpwid 4589 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
| 7 | heibor.1 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
| 9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
| 10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
| 11 | heibor.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
| 13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
| 14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
| 15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
| 16 | 7, 8, 9, 10, 11, 3, 12, 13, 14, 15 | heiborlem4 37780 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
| 17 | fvex 6899 | . . . . . . . . . 10 ⊢ (𝑆‘𝑘) ∈ V | |
| 18 | vex 3467 | . . . . . . . . . 10 ⊢ 𝑘 ∈ V | |
| 19 | 7, 8, 9, 17, 18 | heiborlem2 37778 | . . . . . . . . 9 ⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
| 20 | 19 | simp2bi 1146 | . . . . . . . 8 ⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
| 22 | 6, 21 | sseldd 3964 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
| 23 | 1, 22 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ 𝑋) |
| 24 | 23 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋) |
| 25 | fveq2 6886 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) | |
| 26 | 25 | eleq1d 2818 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) ∈ 𝑋 ↔ (𝑆‘𝑛) ∈ 𝑋)) |
| 27 | 26 | cbvralvw 3223 | . . . 4 ⊢ (∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
| 28 | 24, 27 | sylib 218 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
| 29 | 3re 12328 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
| 30 | 3pos 12353 | . . . . . . 7 ⊢ 0 < 3 | |
| 31 | 29, 30 | elrpii 13019 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
| 32 | 2nn 12321 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 33 | nnnn0 12516 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 34 | nnexpcl 14097 | . . . . . . . 8 ⊢ ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ) | |
| 35 | 32, 33, 34 | sylancr 587 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ) |
| 36 | 35 | nnrpd 13057 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+) |
| 37 | rpdivcl 13042 | . . . . . 6 ⊢ ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+) | |
| 38 | 31, 36, 37 | sylancr 587 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+) |
| 39 | opelxpi 5702 | . . . . . 6 ⊢ (((𝑆‘𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) | |
| 40 | 39 | expcom 413 | . . . . 5 ⊢ ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
| 41 | 38, 40 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
| 42 | 41 | ralimia 3069 | . . 3 ⊢ (∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
| 43 | 28, 42 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
| 44 | heibor.12 | . . 3 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
| 45 | 44 | fmpt 7110 | . 2 ⊢ (∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| 46 | 43, 45 | sylib 218 | 1 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∃wrex 3059 ∩ cin 3930 ⊆ wss 3931 ifcif 4505 𝒫 cpw 4580 〈cop 4612 ∪ cuni 4887 ∪ ciun 4971 class class class wbr 5123 {copab 5185 ↦ cmpt 5205 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 2nd c2nd 7995 Fincfn 8967 0cc0 11137 1c1 11138 + caddc 11140 − cmin 11474 / cdiv 11902 ℕcn 12248 2c2 12303 3c3 12304 ℕ0cn0 12509 ℝ+crp 13016 seqcseq 14024 ↑cexp 14084 ballcbl 21313 MetOpencmopn 21316 CMetccmet 25224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: heiborlem8 37784 heiborlem9 37785 |
| Copyright terms: Public domain | W3C validator |