![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem5 | Structured version Visualization version GIF version |
Description: Lemma for heibor 37535. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25324. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
Ref | Expression |
---|---|
heiborlem5 | ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12525 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
2 | inss1 4227 | . . . . . . . . 9 ⊢ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋 | |
3 | heibor.7 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | |
4 | 3 | ffvelcdmda 7090 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ (𝒫 𝑋 ∩ Fin)) |
5 | 2, 4 | sselid 3976 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
6 | 5 | elpwid 4606 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
7 | heibor.1 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
8 | heibor.3 | . . . . . . . . 9 ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | |
9 | heibor.4 | . . . . . . . . 9 ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | |
10 | heibor.5 | . . . . . . . . 9 ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | |
11 | heibor.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
12 | heibor.8 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | |
13 | heibor.9 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | |
14 | heibor.10 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶𝐺0) | |
15 | heibor.11 | . . . . . . . . 9 ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | |
16 | 7, 8, 9, 10, 11, 3, 12, 13, 14, 15 | heiborlem4 37528 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
17 | fvex 6906 | . . . . . . . . . 10 ⊢ (𝑆‘𝑘) ∈ V | |
18 | vex 3466 | . . . . . . . . . 10 ⊢ 𝑘 ∈ V | |
19 | 7, 8, 9, 17, 18 | heiborlem2 37526 | . . . . . . . . 9 ⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
20 | 19 | simp2bi 1143 | . . . . . . . 8 ⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
22 | 6, 21 | sseldd 3979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
23 | 1, 22 | sylan2 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ 𝑋) |
24 | 23 | ralrimiva 3136 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋) |
25 | fveq2 6893 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) | |
26 | 25 | eleq1d 2811 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) ∈ 𝑋 ↔ (𝑆‘𝑛) ∈ 𝑋)) |
27 | 26 | cbvralvw 3225 | . . . 4 ⊢ (∀𝑘 ∈ ℕ (𝑆‘𝑘) ∈ 𝑋 ↔ ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
28 | 24, 27 | sylib 217 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋) |
29 | 3re 12338 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
30 | 3pos 12363 | . . . . . . 7 ⊢ 0 < 3 | |
31 | 29, 30 | elrpii 13025 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
32 | 2nn 12331 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
33 | nnnn0 12525 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
34 | nnexpcl 14088 | . . . . . . . 8 ⊢ ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ) | |
35 | 32, 33, 34 | sylancr 585 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ) |
36 | 35 | nnrpd 13062 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+) |
37 | rpdivcl 13047 | . . . . . 6 ⊢ ((3 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (3 / (2↑𝑛)) ∈ ℝ+) | |
38 | 31, 36, 37 | sylancr 585 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (3 / (2↑𝑛)) ∈ ℝ+) |
39 | opelxpi 5711 | . . . . . 6 ⊢ (((𝑆‘𝑛) ∈ 𝑋 ∧ (3 / (2↑𝑛)) ∈ ℝ+) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) | |
40 | 39 | expcom 412 | . . . . 5 ⊢ ((3 / (2↑𝑛)) ∈ ℝ+ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
41 | 38, 40 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑆‘𝑛) ∈ 𝑋 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+))) |
42 | 41 | ralimia 3070 | . . 3 ⊢ (∀𝑛 ∈ ℕ (𝑆‘𝑛) ∈ 𝑋 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
43 | 28, 42 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+)) |
44 | heibor.12 | . . 3 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
45 | 44 | fmpt 7116 | . 2 ⊢ (∀𝑛 ∈ ℕ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 ∈ (𝑋 × ℝ+) ↔ 𝑀:ℕ⟶(𝑋 × ℝ+)) |
46 | 43, 45 | sylib 217 | 1 ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∃wrex 3060 ∩ cin 3945 ⊆ wss 3946 ifcif 4523 𝒫 cpw 4597 〈cop 4629 ∪ cuni 4905 ∪ ciun 4993 class class class wbr 5145 {copab 5207 ↦ cmpt 5228 × cxp 5672 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 2nd c2nd 7994 Fincfn 8966 0cc0 11149 1c1 11150 + caddc 11152 − cmin 11485 / cdiv 11912 ℕcn 12258 2c2 12313 3c3 12314 ℕ0cn0 12518 ℝ+crp 13022 seqcseq 14015 ↑cexp 14075 ballcbl 21326 MetOpencmopn 21329 CMetccmet 25270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-seq 14016 df-exp 14076 |
This theorem is referenced by: heiborlem8 37532 heiborlem9 37533 |
Copyright terms: Public domain | W3C validator |