Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem6 Structured version   Visualization version   GIF version

Theorem heiborlem6 35901
Description: Lemma for heibor 35906. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem6 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚)   𝐶(𝑥,𝑧,𝑘)   𝑇(𝑣,𝑢,𝑘)   𝑈(𝑘,𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑘,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem6
StepHypRef Expression
1 nnnn0 12170 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 heibor.6 . . . . . . . 8 (𝜑𝐷 ∈ (CMet‘𝑋))
3 cmetmet 24355 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
42, 3syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
5 metxmet 23395 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
64, 5syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
76adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋))
8 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9 inss1 4159 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fss 6601 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋)
118, 9, 10sylancl 585 . . . . . . . 8 (𝜑𝐹:ℕ0⟶𝒫 𝑋)
12 peano2nn0 12203 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
13 ffvelrn 6941 . . . . . . . 8 ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1411, 12, 13syl2an 595 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1514elpwid 4541 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋)
16 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
19 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
20 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
21 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
22 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
23 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
2416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 35899 . . . . . . . 8 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
2512, 24sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
26 fvex 6769 . . . . . . . . 9 (𝑆‘(𝑘 + 1)) ∈ V
27 ovex 7288 . . . . . . . . 9 (𝑘 + 1) ∈ V
2816, 17, 18, 26, 27heiborlem2 35897 . . . . . . . 8 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾))
2928simp2bi 1144 . . . . . . 7 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3025, 29syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3115, 30sseldd 3918 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋)
3211ffvelrnda 6943 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
3332elpwid 4541 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
3416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 35899 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
35 fvex 6769 . . . . . . . . 9 (𝑆𝑘) ∈ V
36 vex 3426 . . . . . . . . 9 𝑘 ∈ V
3716, 17, 18, 35, 36heiborlem2 35897 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
3837simp2bi 1144 . . . . . . 7 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
3934, 38syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
4033, 39sseldd 3918 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
41 3re 11983 . . . . . 6 3 ∈ ℝ
42 2nn 11976 . . . . . . . . 9 2 ∈ ℕ
43 nnexpcl 13723 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
4442, 12, 43sylancr 586 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℕ)
4544nnrpd 12699 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℝ+)
4645adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
47 rerpdivcl 12689 . . . . . 6 ((3 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
4841, 46, 47sylancr 586 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
49 nnexpcl 13723 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
5042, 49mpan 686 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
5150nnrpd 12699 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℝ+)
5251adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
53 rerpdivcl 12689 . . . . . 6 ((3 ∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 / (2↑𝑘)) ∈ ℝ)
5441, 52, 53sylancr 586 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑𝑘)) ∈ ℝ)
55 oveq1 7262 . . . . . . . . . . . 12 (𝑧 = (𝑆𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
56 oveq2 7263 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
5756oveq2d 7271 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘)))
5857oveq2d 7271 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
59 ovex 7288 . . . . . . . . . . . 12 ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V
6055, 58, 19, 59ovmpo 7411 . . . . . . . . . . 11 (((𝑆𝑘) ∈ 𝑋𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
6140, 60sylancom 587 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
62 df-br 5071 . . . . . . . . . . . . . . . . 17 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
63 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
64 df-ov 7258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
6563, 64eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
6635, 36op2ndd 7815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
6766oveq1d 7270 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
6865, 67breq12d 5083 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
69 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
70 df-ov 7258 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
7169, 70eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
7265, 67oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
7371, 72ineq12d 4144 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
7473eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
7568, 74anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7675rspccv 3549 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7721, 76syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7862, 77syl5bi 241 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
8034, 79mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1))
82 ovex 7288 . . . . . . . . . . . . . . 15 ((𝑆𝑘)𝑇𝑘) ∈ V
8316, 17, 18, 82, 27heiborlem2 35897 . . . . . . . . . . . . . 14 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾))
8483simp2bi 1144 . . . . . . . . . . . . 13 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8581, 84syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8615, 85sseldd 3918 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ 𝑋)
8712adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
88 oveq1 7262 . . . . . . . . . . . 12 (𝑧 = ((𝑆𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
89 oveq2 7263 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1)))
9089oveq2d 7271 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1))))
9190oveq2d 7271 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
92 ovex 7288 . . . . . . . . . . . 12 (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V
9388, 91, 19, 92ovmpo 7411 . . . . . . . . . . 11 ((((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9486, 87, 93syl2anc 583 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9561, 94ineq12d 4144 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))))
9680simprd 495 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)
97 0elpw 5273 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑈
98 0fin 8916 . . . . . . . . . . . . 13 ∅ ∈ Fin
99 elin 3899 . . . . . . . . . . . . 13 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin))
10097, 98, 99mpbir2an 707 . . . . . . . . . . . 12 ∅ ∈ (𝒫 𝑈 ∩ Fin)
101 0ss 4327 . . . . . . . . . . . 12 ∅ ⊆
102 unieq 4847 . . . . . . . . . . . . . 14 (𝑣 = ∅ → 𝑣 = ∅)
103102sseq2d 3949 . . . . . . . . . . . . 13 (𝑣 = ∅ → (∅ ⊆ 𝑣 ↔ ∅ ⊆ ∅))
104103rspcev 3552 . . . . . . . . . . . 12 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ ∅ ⊆ ∅) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
105100, 101, 104mp2an 688 . . . . . . . . . . 11 𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣
106 0ex 5226 . . . . . . . . . . . . 13 ∅ ∈ V
107 sseq1 3942 . . . . . . . . . . . . . . 15 (𝑢 = ∅ → (𝑢 𝑣 ↔ ∅ ⊆ 𝑣))
108107rexbidv 3225 . . . . . . . . . . . . . 14 (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
109108notbid 317 . . . . . . . . . . . . 13 (𝑢 = ∅ → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
110106, 109, 17elab2 3606 . . . . . . . . . . . 12 (∅ ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
111110con2bii 357 . . . . . . . . . . 11 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣 ↔ ¬ ∅ ∈ 𝐾)
112105, 111mpbi 229 . . . . . . . . . 10 ¬ ∅ ∈ 𝐾
113 nelne2 3041 . . . . . . . . . 10 (((((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11496, 112, 113sylancl 585 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11595, 114eqnetrrd 3011 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅)
11651rpreccld 12711 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) ∈ ℝ+)
117116adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ+)
118117rpred 12701 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ)
11945rpreccld 12711 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
120119adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
121120rpred 12701 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ)
122 rexadd 12895 . . . . . . . . . . . 12 (((1 / (2↑𝑘)) ∈ ℝ ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
123118, 121, 122syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
124123breq1d 5080 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
125117rpxrd 12702 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ*)
126120rpxrd 12702 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ*)
127 bldisj 23459 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)
1281273exp2 1352 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 / (2↑(𝑘 + 1))) ∈ ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))))
129128imp32 418 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
1307, 40, 86, 125, 126, 129syl32anc 1376 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
131124, 130sylbird 259 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
132131necon3ad 2955 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
133115, 132mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
134117, 120rpaddcld 12716 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ+)
135134rpred 12701 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ)
1364adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋))
137 metcl 23393 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
138136, 40, 86, 137syl3anc 1369 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
139135, 138letrid 11057 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∨ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
140139ord 860 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
141133, 140mpd 15 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
142 seqp1 13664 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
143 nn0uz 12549 . . . . . . . . . . . 12 0 = (ℤ‘0)
144142, 143eleq2s 2857 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
14523fveq1i 6757 . . . . . . . . . . 11 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
14623fveq1i 6757 . . . . . . . . . . . 12 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
147146oveq1i 7265 . . . . . . . . . . 11 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
148144, 145, 1473eqtr4g 2804 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
149 eqid 2738 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
150 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
151 oveq1 7262 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
152150, 151ifbieq2d 4482 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
153 nn0p1nn 12202 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
154 nnne0 11937 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
155154neneqd 2947 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
156153, 155syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ¬ (𝑘 + 1) = 0)
157156iffalsed 4467 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
158 ovex 7288 . . . . . . . . . . . . . 14 ((𝑘 + 1) − 1) ∈ V
159157, 158eqeltrdi 2847 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
160149, 152, 12, 159fvmptd3 6880 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
161 nn0cn 12173 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
162 ax-1cn 10860 . . . . . . . . . . . . 13 1 ∈ ℂ
163 pncan 11157 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
164161, 162, 163sylancl 585 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
165160, 157, 1643eqtrd 2782 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
166165oveq2d 7271 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
167148, 166eqtrd 2778 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
168167adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
169168oveq1d 7270 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)))
170 metsym 23411 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
171136, 86, 40, 170syl3anc 1369 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
172169, 171eqtrd 2778 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
173 3cn 11984 . . . . . . . . . . . . 13 3 ∈ ℂ
1741732timesi 12041 . . . . . . . . . . . 12 (2 · 3) = (3 + 3)
175174oveq1i 7265 . . . . . . . . . . 11 ((2 · 3) − 3) = ((3 + 3) − 3)
176173, 173pncan3oi 11167 . . . . . . . . . . 11 ((3 + 3) − 3) = 3
177 df-3 11967 . . . . . . . . . . 11 3 = (2 + 1)
178175, 176, 1773eqtri 2770 . . . . . . . . . 10 ((2 · 3) − 3) = (2 + 1)
179178oveq1i 7265 . . . . . . . . 9 (((2 · 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1)))
180 rpcn 12669 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ)
181 rpne0 12675 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0)
182 2cn 11978 . . . . . . . . . . . . 13 2 ∈ ℂ
183182, 173mulcli 10913 . . . . . . . . . . . 12 (2 · 3) ∈ ℂ
184 divsubdir 11599 . . . . . . . . . . . 12 (((2 · 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
185183, 173, 184mp3an12 1449 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
186180, 181, 185syl2anc 583 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
18745, 186syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
188 divdir 11588 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
189182, 162, 188mp3an12 1449 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
190180, 181, 189syl2anc 583 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
19145, 190syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
192179, 187, 1913eqtr3a 2803 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
193 rpcn 12669 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
194 rpne0 12675 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
195 2cnne0 12113 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
196 divcan5 11607 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
197173, 195, 196mp3an13 1450 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
198193, 194, 197syl2anc 583 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
19951, 198syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
20051, 193syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℂ)
201 mulcom 10888 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
202182, 200, 201sylancr 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
203 expp1 13717 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
204182, 203mpan 686 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
205202, 204eqtr4d 2781 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = (2↑(𝑘 + 1)))
206205oveq2d 7271 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1))))
207199, 206eqtr3d 2780 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (3 / (2↑𝑘)) = ((2 · 3) / (2↑(𝑘 + 1))))
208207oveq1d 7270 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
209 divcan5 11607 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
210162, 195, 209mp3an13 1450 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
211193, 194, 210syl2anc 583 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
21251, 211syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
213 2t1e2 12066 . . . . . . . . . . . 12 (2 · 1) = 2
214213a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · 1) = 2)
215214, 205oveq12d 7273 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1))))
216212, 215eqtr3d 2780 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) = (2 / (2↑(𝑘 + 1))))
217216oveq1d 7270 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
218192, 208, 2173eqtr4d 2788 . . . . . . 7 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
219218adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
220141, 172, 2193brtr4d 5102 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))
221 blss2 23465 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 / (2↑𝑘)) ∈ ℝ ∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2227, 31, 40, 48, 54, 220, 221syl33anc 1383 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2231, 222sylan2 592 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
224 peano2nn 11915 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
225 fveq2 6756 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (𝑆𝑛) = (𝑆‘(𝑘 + 1)))
226 oveq2 7263 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1)))
227226oveq2d 7271 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1))))
228225, 227opeq12d 4809 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
229 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
230 opex 5373 . . . . . . . 8 ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩ ∈ V
231228, 229, 230fvmpt 6857 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
232224, 231syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
233232adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
234233fveq2d 6760 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩))
235 df-ov 7258 . . . 4 ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
236234, 235eqtr4di 2797 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))))
237 fveq2 6756 . . . . . . . 8 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
238 oveq2 7263 . . . . . . . . 9 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
239238oveq2d 7271 . . . . . . . 8 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
240237, 239opeq12d 4809 . . . . . . 7 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
241 opex 5373 . . . . . . 7 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
242240, 229, 241fvmpt 6857 . . . . . 6 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
243242fveq2d 6760 . . . . 5 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
244 df-ov 7258 . . . . 5 ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
245243, 244eqtr4di 2797 . . . 4 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
246245adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
247223, 236, 2463sstr4d 3964 . 2 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
248247ralrimiva 3107 1 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  {copab 5132  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  2nd c2nd 7803  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cuz 12511  +crp 12659   +𝑒 cxad 12775  seqcseq 13649  cexp 13710  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-seq 13650  df-exp 13711  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-cmet 24326
This theorem is referenced by:  heiborlem8  35903  heiborlem9  35904
  Copyright terms: Public domain W3C validator