Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem6 Structured version   Visualization version   GIF version

Theorem heiborlem6 37810
Description: Lemma for heibor 37815. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem6 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚)   𝐶(𝑥,𝑧,𝑘)   𝑇(𝑣,𝑢,𝑘)   𝑈(𝑘,𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑘,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem6
StepHypRef Expression
1 nnnn0 12449 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 heibor.6 . . . . . . . 8 (𝜑𝐷 ∈ (CMet‘𝑋))
3 cmetmet 25186 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
42, 3syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
5 metxmet 24222 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
64, 5syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
76adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋))
8 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9 inss1 4200 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fss 6704 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋)
118, 9, 10sylancl 586 . . . . . . . 8 (𝜑𝐹:ℕ0⟶𝒫 𝑋)
12 peano2nn0 12482 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
13 ffvelcdm 7053 . . . . . . . 8 ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1411, 12, 13syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1514elpwid 4572 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋)
16 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
19 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
20 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
21 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
22 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
23 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
2416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 37808 . . . . . . . 8 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
2512, 24sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
26 fvex 6871 . . . . . . . . 9 (𝑆‘(𝑘 + 1)) ∈ V
27 ovex 7420 . . . . . . . . 9 (𝑘 + 1) ∈ V
2816, 17, 18, 26, 27heiborlem2 37806 . . . . . . . 8 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾))
2928simp2bi 1146 . . . . . . 7 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3025, 29syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3115, 30sseldd 3947 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋)
3211ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
3332elpwid 4572 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
3416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 37808 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
35 fvex 6871 . . . . . . . . 9 (𝑆𝑘) ∈ V
36 vex 3451 . . . . . . . . 9 𝑘 ∈ V
3716, 17, 18, 35, 36heiborlem2 37806 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
3837simp2bi 1146 . . . . . . 7 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
3934, 38syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
4033, 39sseldd 3947 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
41 3re 12266 . . . . . 6 3 ∈ ℝ
42 2nn 12259 . . . . . . . . 9 2 ∈ ℕ
43 nnexpcl 14039 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
4442, 12, 43sylancr 587 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℕ)
4544nnrpd 12993 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℝ+)
4645adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
47 rerpdivcl 12983 . . . . . 6 ((3 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
4841, 46, 47sylancr 587 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
49 nnexpcl 14039 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
5042, 49mpan 690 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
5150nnrpd 12993 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℝ+)
5251adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
53 rerpdivcl 12983 . . . . . 6 ((3 ∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 / (2↑𝑘)) ∈ ℝ)
5441, 52, 53sylancr 587 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑𝑘)) ∈ ℝ)
55 oveq1 7394 . . . . . . . . . . . 12 (𝑧 = (𝑆𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
56 oveq2 7395 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
5756oveq2d 7403 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘)))
5857oveq2d 7403 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
59 ovex 7420 . . . . . . . . . . . 12 ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V
6055, 58, 19, 59ovmpo 7549 . . . . . . . . . . 11 (((𝑆𝑘) ∈ 𝑋𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
6140, 60sylancom 588 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
62 df-br 5108 . . . . . . . . . . . . . . . . 17 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
63 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
64 df-ov 7390 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
6563, 64eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
6635, 36op2ndd 7979 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
6766oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
6865, 67breq12d 5120 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
69 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
70 df-ov 7390 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
7169, 70eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
7265, 67oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
7371, 72ineq12d 4184 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
7473eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
7568, 74anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7675rspccv 3585 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7721, 76syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7862, 77biimtrid 242 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
8034, 79mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1))
82 ovex 7420 . . . . . . . . . . . . . . 15 ((𝑆𝑘)𝑇𝑘) ∈ V
8316, 17, 18, 82, 27heiborlem2 37806 . . . . . . . . . . . . . 14 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾))
8483simp2bi 1146 . . . . . . . . . . . . 13 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8581, 84syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8615, 85sseldd 3947 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ 𝑋)
8712adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
88 oveq1 7394 . . . . . . . . . . . 12 (𝑧 = ((𝑆𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
89 oveq2 7395 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1)))
9089oveq2d 7403 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1))))
9190oveq2d 7403 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
92 ovex 7420 . . . . . . . . . . . 12 (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V
9388, 91, 19, 92ovmpo 7549 . . . . . . . . . . 11 ((((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9486, 87, 93syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9561, 94ineq12d 4184 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))))
9680simprd 495 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)
97 0elpw 5311 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑈
98 0fi 9013 . . . . . . . . . . . . 13 ∅ ∈ Fin
99 elin 3930 . . . . . . . . . . . . 13 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin))
10097, 98, 99mpbir2an 711 . . . . . . . . . . . 12 ∅ ∈ (𝒫 𝑈 ∩ Fin)
101 0ss 4363 . . . . . . . . . . . 12 ∅ ⊆
102 unieq 4882 . . . . . . . . . . . . . 14 (𝑣 = ∅ → 𝑣 = ∅)
103102sseq2d 3979 . . . . . . . . . . . . 13 (𝑣 = ∅ → (∅ ⊆ 𝑣 ↔ ∅ ⊆ ∅))
104103rspcev 3588 . . . . . . . . . . . 12 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ ∅ ⊆ ∅) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
105100, 101, 104mp2an 692 . . . . . . . . . . 11 𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣
106 0ex 5262 . . . . . . . . . . . . 13 ∅ ∈ V
107 sseq1 3972 . . . . . . . . . . . . . . 15 (𝑢 = ∅ → (𝑢 𝑣 ↔ ∅ ⊆ 𝑣))
108107rexbidv 3157 . . . . . . . . . . . . . 14 (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
109108notbid 318 . . . . . . . . . . . . 13 (𝑢 = ∅ → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
110106, 109, 17elab2 3649 . . . . . . . . . . . 12 (∅ ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
111110con2bii 357 . . . . . . . . . . 11 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣 ↔ ¬ ∅ ∈ 𝐾)
112105, 111mpbi 230 . . . . . . . . . 10 ¬ ∅ ∈ 𝐾
113 nelne2 3023 . . . . . . . . . 10 (((((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11496, 112, 113sylancl 586 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11595, 114eqnetrrd 2993 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅)
11651rpreccld 13005 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) ∈ ℝ+)
117116adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ+)
118117rpred 12995 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ)
11945rpreccld 13005 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
120119adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
121120rpred 12995 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ)
122 rexadd 13192 . . . . . . . . . . . 12 (((1 / (2↑𝑘)) ∈ ℝ ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
123118, 121, 122syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
124123breq1d 5117 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
125117rpxrd 12996 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ*)
126120rpxrd 12996 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ*)
127 bldisj 24286 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)
1281273exp2 1355 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 / (2↑(𝑘 + 1))) ∈ ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))))
129128imp32 418 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
1307, 40, 86, 125, 126, 129syl32anc 1380 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
131124, 130sylbird 260 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
132131necon3ad 2938 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
133115, 132mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
134117, 120rpaddcld 13010 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ+)
135134rpred 12995 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ)
1364adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋))
137 metcl 24220 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
138136, 40, 86, 137syl3anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
139135, 138letrid 11326 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∨ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
140139ord 864 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
141133, 140mpd 15 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
142 seqp1 13981 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
143 nn0uz 12835 . . . . . . . . . . . 12 0 = (ℤ‘0)
144142, 143eleq2s 2846 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
14523fveq1i 6859 . . . . . . . . . . 11 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
14623fveq1i 6859 . . . . . . . . . . . 12 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
147146oveq1i 7397 . . . . . . . . . . 11 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
148144, 145, 1473eqtr4g 2789 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
149 eqid 2729 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
150 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
151 oveq1 7394 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
152150, 151ifbieq2d 4515 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
153 nn0p1nn 12481 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
154 nnne0 12220 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
155154neneqd 2930 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
156153, 155syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ¬ (𝑘 + 1) = 0)
157156iffalsed 4499 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
158 ovex 7420 . . . . . . . . . . . . . 14 ((𝑘 + 1) − 1) ∈ V
159157, 158eqeltrdi 2836 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
160149, 152, 12, 159fvmptd3 6991 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
161 nn0cn 12452 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
162 ax-1cn 11126 . . . . . . . . . . . . 13 1 ∈ ℂ
163 pncan 11427 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
164161, 162, 163sylancl 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
165160, 157, 1643eqtrd 2768 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
166165oveq2d 7403 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
167148, 166eqtrd 2764 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
168167adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
169168oveq1d 7402 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)))
170 metsym 24238 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
171136, 86, 40, 170syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
172169, 171eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
173 3cn 12267 . . . . . . . . . . . . 13 3 ∈ ℂ
1741732timesi 12319 . . . . . . . . . . . 12 (2 · 3) = (3 + 3)
175174oveq1i 7397 . . . . . . . . . . 11 ((2 · 3) − 3) = ((3 + 3) − 3)
176173, 173pncan3oi 11437 . . . . . . . . . . 11 ((3 + 3) − 3) = 3
177 df-3 12250 . . . . . . . . . . 11 3 = (2 + 1)
178175, 176, 1773eqtri 2756 . . . . . . . . . 10 ((2 · 3) − 3) = (2 + 1)
179178oveq1i 7397 . . . . . . . . 9 (((2 · 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1)))
180 rpcn 12962 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ)
181 rpne0 12968 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0)
182 2cn 12261 . . . . . . . . . . . . 13 2 ∈ ℂ
183182, 173mulcli 11181 . . . . . . . . . . . 12 (2 · 3) ∈ ℂ
184 divsubdir 11876 . . . . . . . . . . . 12 (((2 · 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
185183, 173, 184mp3an12 1453 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
186180, 181, 185syl2anc 584 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
18745, 186syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
188 divdir 11862 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
189182, 162, 188mp3an12 1453 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
190180, 181, 189syl2anc 584 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
19145, 190syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
192179, 187, 1913eqtr3a 2788 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
193 rpcn 12962 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
194 rpne0 12968 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
195 2cnne0 12391 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
196 divcan5 11884 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
197173, 195, 196mp3an13 1454 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
198193, 194, 197syl2anc 584 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
19951, 198syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
20051, 193syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℂ)
201 mulcom 11154 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
202182, 200, 201sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
203 expp1 14033 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
204182, 203mpan 690 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
205202, 204eqtr4d 2767 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = (2↑(𝑘 + 1)))
206205oveq2d 7403 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1))))
207199, 206eqtr3d 2766 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (3 / (2↑𝑘)) = ((2 · 3) / (2↑(𝑘 + 1))))
208207oveq1d 7402 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
209 divcan5 11884 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
210162, 195, 209mp3an13 1454 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
211193, 194, 210syl2anc 584 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
21251, 211syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
213 2t1e2 12344 . . . . . . . . . . . 12 (2 · 1) = 2
214213a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · 1) = 2)
215214, 205oveq12d 7405 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1))))
216212, 215eqtr3d 2766 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) = (2 / (2↑(𝑘 + 1))))
217216oveq1d 7402 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
218192, 208, 2173eqtr4d 2774 . . . . . . 7 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
219218adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
220141, 172, 2193brtr4d 5139 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))
221 blss2 24292 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 / (2↑𝑘)) ∈ ℝ ∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2227, 31, 40, 48, 54, 220, 221syl33anc 1387 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2231, 222sylan2 593 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
224 peano2nn 12198 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
225 fveq2 6858 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (𝑆𝑛) = (𝑆‘(𝑘 + 1)))
226 oveq2 7395 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1)))
227226oveq2d 7403 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1))))
228225, 227opeq12d 4845 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
229 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
230 opex 5424 . . . . . . . 8 ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩ ∈ V
231228, 229, 230fvmpt 6968 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
232224, 231syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
233232adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
234233fveq2d 6862 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩))
235 df-ov 7390 . . . 4 ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
236234, 235eqtr4di 2782 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))))
237 fveq2 6858 . . . . . . . 8 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
238 oveq2 7395 . . . . . . . . 9 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
239238oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
240237, 239opeq12d 4845 . . . . . . 7 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
241 opex 5424 . . . . . . 7 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
242240, 229, 241fvmpt 6968 . . . . . 6 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
243242fveq2d 6862 . . . . 5 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
244 df-ov 7390 . . . . 5 ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
245243, 244eqtr4di 2782 . . . 4 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
246245adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
247223, 236, 2463sstr4d 4002 . 2 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
248247ralrimiva 3125 1 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  {copab 5169  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  2nd c2nd 7967  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cuz 12793  +crp 12951   +𝑒 cxad 13070  seqcseq 13966  cexp 14026  ∞Metcxmet 21249  Metcmet 21250  ballcbl 21251  MetOpencmopn 21254  CMetccmet 25154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-seq 13967  df-exp 14027  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-cmet 25157
This theorem is referenced by:  heiborlem8  37812  heiborlem9  37813
  Copyright terms: Public domain W3C validator