Step | Hyp | Ref
| Expression |
1 | | nnnn0 12481 |
. . . 4
β’ (π β β β π β
β0) |
2 | | heibor.6 |
. . . . . . . 8
β’ (π β π· β (CMetβπ)) |
3 | | cmetmet 24810 |
. . . . . . . 8
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
4 | 2, 3 | syl 17 |
. . . . . . 7
β’ (π β π· β (Metβπ)) |
5 | | metxmet 23847 |
. . . . . . 7
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
6 | 4, 5 | syl 17 |
. . . . . 6
β’ (π β π· β (βMetβπ)) |
7 | 6 | adantr 481 |
. . . . 5
β’ ((π β§ π β β0) β π· β (βMetβπ)) |
8 | | heibor.7 |
. . . . . . . . 9
β’ (π β πΉ:β0βΆ(π« π β© Fin)) |
9 | | inss1 4228 |
. . . . . . . . 9
β’
(π« π β©
Fin) β π« π |
10 | | fss 6734 |
. . . . . . . . 9
β’ ((πΉ:β0βΆ(π« π β© Fin) β§ (π«
π β© Fin) β
π« π) β πΉ:β0βΆπ« π) |
11 | 8, 9, 10 | sylancl 586 |
. . . . . . . 8
β’ (π β πΉ:β0βΆπ« π) |
12 | | peano2nn0 12514 |
. . . . . . . 8
β’ (π β β0
β (π + 1) β
β0) |
13 | | ffvelcdm 7083 |
. . . . . . . 8
β’ ((πΉ:β0βΆπ« π β§ (π + 1) β β0) β
(πΉβ(π + 1)) β π« π) |
14 | 11, 12, 13 | syl2an 596 |
. . . . . . 7
β’ ((π β§ π β β0) β (πΉβ(π + 1)) β π« π) |
15 | 14 | elpwid 4611 |
. . . . . 6
β’ ((π β§ π β β0) β (πΉβ(π + 1)) β π) |
16 | | heibor.1 |
. . . . . . . . 9
β’ π½ = (MetOpenβπ·) |
17 | | heibor.3 |
. . . . . . . . 9
β’ πΎ = {π’ β£ Β¬ βπ£ β (π« π β© Fin)π’ β βͺ π£} |
18 | | heibor.4 |
. . . . . . . . 9
β’ πΊ = {β¨π¦, πβ© β£ (π β β0 β§ π¦ β (πΉβπ) β§ (π¦π΅π) β πΎ)} |
19 | | heibor.5 |
. . . . . . . . 9
β’ π΅ = (π§ β π, π β β0 β¦ (π§(ballβπ·)(1 / (2βπ)))) |
20 | | heibor.8 |
. . . . . . . . 9
β’ (π β βπ β β0 π = βͺ π¦ β (πΉβπ)(π¦π΅π)) |
21 | | heibor.9 |
. . . . . . . . 9
β’ (π β βπ₯ β πΊ ((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ)) |
22 | | heibor.10 |
. . . . . . . . 9
β’ (π β πΆπΊ0) |
23 | | heibor.11 |
. . . . . . . . 9
β’ π = seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1)))) |
24 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 36768 |
. . . . . . . 8
β’ ((π β§ (π + 1) β β0) β
(πβ(π + 1))πΊ(π + 1)) |
25 | 12, 24 | sylan2 593 |
. . . . . . 7
β’ ((π β§ π β β0) β (πβ(π + 1))πΊ(π + 1)) |
26 | | fvex 6904 |
. . . . . . . . 9
β’ (πβ(π + 1)) β V |
27 | | ovex 7444 |
. . . . . . . . 9
β’ (π + 1) β V |
28 | 16, 17, 18, 26, 27 | heiborlem2 36766 |
. . . . . . . 8
β’ ((πβ(π + 1))πΊ(π + 1) β ((π + 1) β β0 β§ (πβ(π + 1)) β (πΉβ(π + 1)) β§ ((πβ(π + 1))π΅(π + 1)) β πΎ)) |
29 | 28 | simp2bi 1146 |
. . . . . . 7
β’ ((πβ(π + 1))πΊ(π + 1) β (πβ(π + 1)) β (πΉβ(π + 1))) |
30 | 25, 29 | syl 17 |
. . . . . 6
β’ ((π β§ π β β0) β (πβ(π + 1)) β (πΉβ(π + 1))) |
31 | 15, 30 | sseldd 3983 |
. . . . 5
β’ ((π β§ π β β0) β (πβ(π + 1)) β π) |
32 | 11 | ffvelcdmda 7086 |
. . . . . . 7
β’ ((π β§ π β β0) β (πΉβπ) β π« π) |
33 | 32 | elpwid 4611 |
. . . . . 6
β’ ((π β§ π β β0) β (πΉβπ) β π) |
34 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 36768 |
. . . . . . 7
β’ ((π β§ π β β0) β (πβπ)πΊπ) |
35 | | fvex 6904 |
. . . . . . . . 9
β’ (πβπ) β V |
36 | | vex 3478 |
. . . . . . . . 9
β’ π β V |
37 | 16, 17, 18, 35, 36 | heiborlem2 36766 |
. . . . . . . 8
β’ ((πβπ)πΊπ β (π β β0 β§ (πβπ) β (πΉβπ) β§ ((πβπ)π΅π) β πΎ)) |
38 | 37 | simp2bi 1146 |
. . . . . . 7
β’ ((πβπ)πΊπ β (πβπ) β (πΉβπ)) |
39 | 34, 38 | syl 17 |
. . . . . 6
β’ ((π β§ π β β0) β (πβπ) β (πΉβπ)) |
40 | 33, 39 | sseldd 3983 |
. . . . 5
β’ ((π β§ π β β0) β (πβπ) β π) |
41 | | 3re 12294 |
. . . . . 6
β’ 3 β
β |
42 | | 2nn 12287 |
. . . . . . . . 9
β’ 2 β
β |
43 | | nnexpcl 14042 |
. . . . . . . . 9
β’ ((2
β β β§ (π +
1) β β0) β (2β(π + 1)) β β) |
44 | 42, 12, 43 | sylancr 587 |
. . . . . . . 8
β’ (π β β0
β (2β(π + 1))
β β) |
45 | 44 | nnrpd 13016 |
. . . . . . 7
β’ (π β β0
β (2β(π + 1))
β β+) |
46 | 45 | adantl 482 |
. . . . . 6
β’ ((π β§ π β β0) β
(2β(π + 1)) β
β+) |
47 | | rerpdivcl 13006 |
. . . . . 6
β’ ((3
β β β§ (2β(π + 1)) β β+) β (3
/ (2β(π + 1))) β
β) |
48 | 41, 46, 47 | sylancr 587 |
. . . . 5
β’ ((π β§ π β β0) β (3 /
(2β(π + 1))) β
β) |
49 | | nnexpcl 14042 |
. . . . . . . . 9
β’ ((2
β β β§ π
β β0) β (2βπ) β β) |
50 | 42, 49 | mpan 688 |
. . . . . . . 8
β’ (π β β0
β (2βπ) β
β) |
51 | 50 | nnrpd 13016 |
. . . . . . 7
β’ (π β β0
β (2βπ) β
β+) |
52 | 51 | adantl 482 |
. . . . . 6
β’ ((π β§ π β β0) β
(2βπ) β
β+) |
53 | | rerpdivcl 13006 |
. . . . . 6
β’ ((3
β β β§ (2βπ) β β+) β (3 /
(2βπ)) β
β) |
54 | 41, 52, 53 | sylancr 587 |
. . . . 5
β’ ((π β§ π β β0) β (3 /
(2βπ)) β
β) |
55 | | oveq1 7418 |
. . . . . . . . . . . 12
β’ (π§ = (πβπ) β (π§(ballβπ·)(1 / (2βπ))) = ((πβπ)(ballβπ·)(1 / (2βπ)))) |
56 | | oveq2 7419 |
. . . . . . . . . . . . . 14
β’ (π = π β (2βπ) = (2βπ)) |
57 | 56 | oveq2d 7427 |
. . . . . . . . . . . . 13
β’ (π = π β (1 / (2βπ)) = (1 / (2βπ))) |
58 | 57 | oveq2d 7427 |
. . . . . . . . . . . 12
β’ (π = π β ((πβπ)(ballβπ·)(1 / (2βπ))) = ((πβπ)(ballβπ·)(1 / (2βπ)))) |
59 | | ovex 7444 |
. . . . . . . . . . . 12
β’ ((πβπ)(ballβπ·)(1 / (2βπ))) β V |
60 | 55, 58, 19, 59 | ovmpo 7570 |
. . . . . . . . . . 11
β’ (((πβπ) β π β§ π β β0) β ((πβπ)π΅π) = ((πβπ)(ballβπ·)(1 / (2βπ)))) |
61 | 40, 60 | sylancom 588 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β ((πβπ)π΅π) = ((πβπ)(ballβπ·)(1 / (2βπ)))) |
62 | | df-br 5149 |
. . . . . . . . . . . . . . . . 17
β’ ((πβπ)πΊπ β β¨(πβπ), πβ© β πΊ) |
63 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ = β¨(πβπ), πβ© β (πβπ₯) = (πββ¨(πβπ), πβ©)) |
64 | | df-ov 7414 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((πβπ)ππ) = (πββ¨(πβπ), πβ©) |
65 | 63, 64 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = β¨(πβπ), πβ© β (πβπ₯) = ((πβπ)ππ)) |
66 | 35, 36 | op2ndd 7988 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ = β¨(πβπ), πβ© β (2nd βπ₯) = π) |
67 | 66 | oveq1d 7426 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = β¨(πβπ), πβ© β ((2nd βπ₯) + 1) = (π + 1)) |
68 | 65, 67 | breq12d 5161 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = β¨(πβπ), πβ© β ((πβπ₯)πΊ((2nd βπ₯) + 1) β ((πβπ)ππ)πΊ(π + 1))) |
69 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π₯ = β¨(πβπ), πβ© β (π΅βπ₯) = (π΅ββ¨(πβπ), πβ©)) |
70 | | df-ov 7414 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πβπ)π΅π) = (π΅ββ¨(πβπ), πβ©) |
71 | 69, 70 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ = β¨(πβπ), πβ© β (π΅βπ₯) = ((πβπ)π΅π)) |
72 | 65, 67 | oveq12d 7429 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ = β¨(πβπ), πβ© β ((πβπ₯)π΅((2nd βπ₯) + 1)) = (((πβπ)ππ)π΅(π + 1))) |
73 | 71, 72 | ineq12d 4213 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = β¨(πβπ), πβ© β ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) = (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1)))) |
74 | 73 | eleq1d 2818 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = β¨(πβπ), πβ© β (((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ β (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ)) |
75 | 68, 74 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = β¨(πβπ), πβ© β (((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ) β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ))) |
76 | 75 | rspccv 3609 |
. . . . . . . . . . . . . . . . . 18
β’
(βπ₯ β
πΊ ((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ) β (β¨(πβπ), πβ© β πΊ β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ))) |
77 | 21, 76 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β¨(πβπ), πβ© β πΊ β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ))) |
78 | 62, 77 | biimtrid 241 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πβπ)πΊπ β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ))) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β ((πβπ)πΊπ β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ))) |
80 | 34, 79 | mpd 15 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β0) β (((πβπ)ππ)πΊ(π + 1) β§ (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ)) |
81 | 80 | simpld 495 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β ((πβπ)ππ)πΊ(π + 1)) |
82 | | ovex 7444 |
. . . . . . . . . . . . . . 15
β’ ((πβπ)ππ) β V |
83 | 16, 17, 18, 82, 27 | heiborlem2 36766 |
. . . . . . . . . . . . . 14
β’ (((πβπ)ππ)πΊ(π + 1) β ((π + 1) β β0 β§
((πβπ)ππ) β (πΉβ(π + 1)) β§ (((πβπ)ππ)π΅(π + 1)) β πΎ)) |
84 | 83 | simp2bi 1146 |
. . . . . . . . . . . . 13
β’ (((πβπ)ππ)πΊ(π + 1) β ((πβπ)ππ) β (πΉβ(π + 1))) |
85 | 81, 84 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β ((πβπ)ππ) β (πΉβ(π + 1))) |
86 | 15, 85 | sseldd 3983 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β ((πβπ)ππ) β π) |
87 | 12 | adantl 482 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (π + 1) β
β0) |
88 | | oveq1 7418 |
. . . . . . . . . . . 12
β’ (π§ = ((πβπ)ππ) β (π§(ballβπ·)(1 / (2βπ))) = (((πβπ)ππ)(ballβπ·)(1 / (2βπ)))) |
89 | | oveq2 7419 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β (2βπ) = (2β(π + 1))) |
90 | 89 | oveq2d 7427 |
. . . . . . . . . . . . 13
β’ (π = (π + 1) β (1 / (2βπ)) = (1 / (2β(π + 1)))) |
91 | 90 | oveq2d 7427 |
. . . . . . . . . . . 12
β’ (π = (π + 1) β (((πβπ)ππ)(ballβπ·)(1 / (2βπ))) = (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) |
92 | | ovex 7444 |
. . . . . . . . . . . 12
β’ (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1)))) β V |
93 | 88, 91, 19, 92 | ovmpo 7570 |
. . . . . . . . . . 11
β’ ((((πβπ)ππ) β π β§ (π + 1) β β0) β
(((πβπ)ππ)π΅(π + 1)) = (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) |
94 | 86, 87, 93 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (((πβπ)ππ)π΅(π + 1)) = (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) |
95 | 61, 94 | ineq12d 4213 |
. . . . . . . . 9
β’ ((π β§ π β β0) β (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) = (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1)))))) |
96 | 80 | simprd 496 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ) |
97 | | 0elpw 5354 |
. . . . . . . . . . . . 13
β’ β
β π« π |
98 | | 0fin 9173 |
. . . . . . . . . . . . 13
β’ β
β Fin |
99 | | elin 3964 |
. . . . . . . . . . . . 13
β’ (β
β (π« π β©
Fin) β (β
β π« π β§ β
β Fin)) |
100 | 97, 98, 99 | mpbir2an 709 |
. . . . . . . . . . . 12
β’ β
β (π« π β©
Fin) |
101 | | 0ss 4396 |
. . . . . . . . . . . 12
β’ β
β βͺ β
|
102 | | unieq 4919 |
. . . . . . . . . . . . . 14
β’ (π£ = β
β βͺ π£ =
βͺ β
) |
103 | 102 | sseq2d 4014 |
. . . . . . . . . . . . 13
β’ (π£ = β
β (β
β βͺ π£ β β
β βͺ β
)) |
104 | 103 | rspcev 3612 |
. . . . . . . . . . . 12
β’ ((β
β (π« π β©
Fin) β§ β
β βͺ β
) β
βπ£ β (π«
π β© Fin)β
β
βͺ π£) |
105 | 100, 101,
104 | mp2an 690 |
. . . . . . . . . . 11
β’
βπ£ β
(π« π β©
Fin)β
β βͺ π£ |
106 | | 0ex 5307 |
. . . . . . . . . . . . 13
β’ β
β V |
107 | | sseq1 4007 |
. . . . . . . . . . . . . . 15
β’ (π’ = β
β (π’ β βͺ π£
β β
β βͺ π£)) |
108 | 107 | rexbidv 3178 |
. . . . . . . . . . . . . 14
β’ (π’ = β
β (βπ£ β (π« π β© Fin)π’ β βͺ π£ β βπ£ β (π« π β© Fin)β
β βͺ π£)) |
109 | 108 | notbid 317 |
. . . . . . . . . . . . 13
β’ (π’ = β
β (Β¬
βπ£ β (π«
π β© Fin)π’ β βͺ π£
β Β¬ βπ£
β (π« π β©
Fin)β
β βͺ π£)) |
110 | 106, 109,
17 | elab2 3672 |
. . . . . . . . . . . 12
β’ (β
β πΎ β Β¬
βπ£ β (π«
π β© Fin)β
β
βͺ π£) |
111 | 110 | con2bii 357 |
. . . . . . . . . . 11
β’
(βπ£ β
(π« π β©
Fin)β
β βͺ π£ β Β¬ β
β πΎ) |
112 | 105, 111 | mpbi 229 |
. . . . . . . . . 10
β’ Β¬
β
β πΎ |
113 | | nelne2 3040 |
. . . . . . . . . 10
β’
(((((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β πΎ β§ Β¬ β
β πΎ) β (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β β
) |
114 | 96, 112, 113 | sylancl 586 |
. . . . . . . . 9
β’ ((π β§ π β β0) β (((πβπ)π΅π) β© (((πβπ)ππ)π΅(π + 1))) β β
) |
115 | 95, 114 | eqnetrrd 3009 |
. . . . . . . 8
β’ ((π β§ π β β0) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) β β
) |
116 | 51 | rpreccld 13028 |
. . . . . . . . . . . . . 14
β’ (π β β0
β (1 / (2βπ))
β β+) |
117 | 116 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β (1 /
(2βπ)) β
β+) |
118 | 117 | rpred 13018 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β (1 /
(2βπ)) β
β) |
119 | 45 | rpreccld 13028 |
. . . . . . . . . . . . . 14
β’ (π β β0
β (1 / (2β(π +
1))) β β+) |
120 | 119 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β (1 /
(2β(π + 1))) β
β+) |
121 | 120 | rpred 13018 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β (1 /
(2β(π + 1))) β
β) |
122 | | rexadd 13213 |
. . . . . . . . . . . 12
β’ (((1 /
(2βπ)) β β
β§ (1 / (2β(π +
1))) β β) β ((1 / (2βπ)) +π (1 / (2β(π + 1)))) = ((1 / (2βπ)) + (1 / (2β(π + 1))))) |
123 | 118, 121,
122 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β ((1 /
(2βπ))
+π (1 / (2β(π + 1)))) = ((1 / (2βπ)) + (1 / (2β(π + 1))))) |
124 | 123 | breq1d 5158 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (((1 /
(2βπ))
+π (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)) β ((1 / (2βπ)) + (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)))) |
125 | 117 | rpxrd 13019 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (1 /
(2βπ)) β
β*) |
126 | 120 | rpxrd 13019 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (1 /
(2β(π + 1))) β
β*) |
127 | | bldisj 23911 |
. . . . . . . . . . . . 13
β’ (((π· β (βMetβπ) β§ (πβπ) β π β§ ((πβπ)ππ) β π) β§ ((1 / (2βπ)) β β* β§ (1 /
(2β(π + 1))) β
β* β§ ((1 / (2βπ)) +π (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)))) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) = β
) |
128 | 127 | 3exp2 1354 |
. . . . . . . . . . . 12
β’ ((π· β (βMetβπ) β§ (πβπ) β π β§ ((πβπ)ππ) β π) β ((1 / (2βπ)) β β* β ((1 /
(2β(π + 1))) β
β* β (((1 / (2βπ)) +π (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) = β
)))) |
129 | 128 | imp32 419 |
. . . . . . . . . . 11
β’ (((π· β (βMetβπ) β§ (πβπ) β π β§ ((πβπ)ππ) β π) β§ ((1 / (2βπ)) β β* β§ (1 /
(2β(π + 1))) β
β*)) β (((1 / (2βπ)) +π (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) = β
)) |
130 | 7, 40, 86, 125, 126, 129 | syl32anc 1378 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (((1 /
(2βπ))
+π (1 / (2β(π + 1)))) β€ ((πβπ)π·((πβπ)ππ)) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) = β
)) |
131 | 124, 130 | sylbird 259 |
. . . . . . . . 9
β’ ((π β§ π β β0) β (((1 /
(2βπ)) + (1 /
(2β(π + 1)))) β€
((πβπ)π·((πβπ)ππ)) β (((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) = β
)) |
132 | 131 | necon3ad 2953 |
. . . . . . . 8
β’ ((π β§ π β β0) β ((((πβπ)(ballβπ·)(1 / (2βπ))) β© (((πβπ)ππ)(ballβπ·)(1 / (2β(π + 1))))) β β
β Β¬ ((1 /
(2βπ)) + (1 /
(2β(π + 1)))) β€
((πβπ)π·((πβπ)ππ)))) |
133 | 115, 132 | mpd 15 |
. . . . . . 7
β’ ((π β§ π β β0) β Β¬ ((1
/ (2βπ)) + (1 /
(2β(π + 1)))) β€
((πβπ)π·((πβπ)ππ))) |
134 | 117, 120 | rpaddcld 13033 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β ((1 /
(2βπ)) + (1 /
(2β(π + 1)))) β
β+) |
135 | 134 | rpred 13018 |
. . . . . . . . 9
β’ ((π β§ π β β0) β ((1 /
(2βπ)) + (1 /
(2β(π + 1)))) β
β) |
136 | 4 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β π· β (Metβπ)) |
137 | | metcl 23845 |
. . . . . . . . . 10
β’ ((π· β (Metβπ) β§ (πβπ) β π β§ ((πβπ)ππ) β π) β ((πβπ)π·((πβπ)ππ)) β β) |
138 | 136, 40, 86, 137 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ π β β0) β ((πβπ)π·((πβπ)ππ)) β β) |
139 | 135, 138 | letrid 11368 |
. . . . . . . 8
β’ ((π β§ π β β0) β (((1 /
(2βπ)) + (1 /
(2β(π + 1)))) β€
((πβπ)π·((πβπ)ππ)) β¨ ((πβπ)π·((πβπ)ππ)) β€ ((1 / (2βπ)) + (1 / (2β(π + 1)))))) |
140 | 139 | ord 862 |
. . . . . . 7
β’ ((π β§ π β β0) β (Β¬
((1 / (2βπ)) + (1 /
(2β(π + 1)))) β€
((πβπ)π·((πβπ)ππ)) β ((πβπ)π·((πβπ)ππ)) β€ ((1 / (2βπ)) + (1 / (2β(π + 1)))))) |
141 | 133, 140 | mpd 15 |
. . . . . 6
β’ ((π β§ π β β0) β ((πβπ)π·((πβπ)ππ)) β€ ((1 / (2βπ)) + (1 / (2β(π + 1))))) |
142 | | seqp1 13983 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯β0) β (seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))β(π + 1)) = ((seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))βπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1)))) |
143 | | nn0uz 12866 |
. . . . . . . . . . . 12
β’
β0 = (β€β₯β0) |
144 | 142, 143 | eleq2s 2851 |
. . . . . . . . . . 11
β’ (π β β0
β (seq0(π, (π β β0
β¦ if(π = 0, πΆ, (π β 1))))β(π + 1)) = ((seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))βπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1)))) |
145 | 23 | fveq1i 6892 |
. . . . . . . . . . 11
β’ (πβ(π + 1)) = (seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))β(π + 1)) |
146 | 23 | fveq1i 6892 |
. . . . . . . . . . . 12
β’ (πβπ) = (seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))βπ) |
147 | 146 | oveq1i 7421 |
. . . . . . . . . . 11
β’ ((πβπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1))) = ((seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1))))βπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1))) |
148 | 144, 145,
147 | 3eqtr4g 2797 |
. . . . . . . . . 10
β’ (π β β0
β (πβ(π + 1)) = ((πβπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1)))) |
149 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (π β β0
β¦ if(π = 0, πΆ, (π β 1))) = (π β β0 β¦ if(π = 0, πΆ, (π β 1))) |
150 | | eqeq1 2736 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β (π = 0 β (π + 1) = 0)) |
151 | | oveq1 7418 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β (π β 1) = ((π + 1) β 1)) |
152 | 150, 151 | ifbieq2d 4554 |
. . . . . . . . . . . . 13
β’ (π = (π + 1) β if(π = 0, πΆ, (π β 1)) = if((π + 1) = 0, πΆ, ((π + 1) β 1))) |
153 | | nn0p1nn 12513 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β (π + 1) β
β) |
154 | | nnne0 12248 |
. . . . . . . . . . . . . . . . 17
β’ ((π + 1) β β β
(π + 1) β
0) |
155 | 154 | neneqd 2945 |
. . . . . . . . . . . . . . . 16
β’ ((π + 1) β β β
Β¬ (π + 1) =
0) |
156 | 153, 155 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β Β¬ (π + 1) =
0) |
157 | 156 | iffalsed 4539 |
. . . . . . . . . . . . . 14
β’ (π β β0
β if((π + 1) = 0,
πΆ, ((π + 1) β 1)) = ((π + 1) β 1)) |
158 | | ovex 7444 |
. . . . . . . . . . . . . 14
β’ ((π + 1) β 1) β
V |
159 | 157, 158 | eqeltrdi 2841 |
. . . . . . . . . . . . 13
β’ (π β β0
β if((π + 1) = 0,
πΆ, ((π + 1) β 1)) β V) |
160 | 149, 152,
12, 159 | fvmptd3 7021 |
. . . . . . . . . . . 12
β’ (π β β0
β ((π β
β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1)) = if((π + 1) = 0, πΆ, ((π + 1) β 1))) |
161 | | nn0cn 12484 |
. . . . . . . . . . . . 13
β’ (π β β0
β π β
β) |
162 | | ax-1cn 11170 |
. . . . . . . . . . . . 13
β’ 1 β
β |
163 | | pncan 11468 |
. . . . . . . . . . . . 13
β’ ((π β β β§ 1 β
β) β ((π + 1)
β 1) = π) |
164 | 161, 162,
163 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β β0
β ((π + 1) β 1)
= π) |
165 | 160, 157,
164 | 3eqtrd 2776 |
. . . . . . . . . . 11
β’ (π β β0
β ((π β
β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1)) = π) |
166 | 165 | oveq2d 7427 |
. . . . . . . . . 10
β’ (π β β0
β ((πβπ)π((π β β0 β¦ if(π = 0, πΆ, (π β 1)))β(π + 1))) = ((πβπ)ππ)) |
167 | 148, 166 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β β0
β (πβ(π + 1)) = ((πβπ)ππ)) |
168 | 167 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β β0) β (πβ(π + 1)) = ((πβπ)ππ)) |
169 | 168 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π β β0) β ((πβ(π + 1))π·(πβπ)) = (((πβπ)ππ)π·(πβπ))) |
170 | | metsym 23863 |
. . . . . . . 8
β’ ((π· β (Metβπ) β§ ((πβπ)ππ) β π β§ (πβπ) β π) β (((πβπ)ππ)π·(πβπ)) = ((πβπ)π·((πβπ)ππ))) |
171 | 136, 86, 40, 170 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β β0) β (((πβπ)ππ)π·(πβπ)) = ((πβπ)π·((πβπ)ππ))) |
172 | 169, 171 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β β0) β ((πβ(π + 1))π·(πβπ)) = ((πβπ)π·((πβπ)ππ))) |
173 | | 3cn 12295 |
. . . . . . . . . . . . 13
β’ 3 β
β |
174 | 173 | 2timesi 12352 |
. . . . . . . . . . . 12
β’ (2
Β· 3) = (3 + 3) |
175 | 174 | oveq1i 7421 |
. . . . . . . . . . 11
β’ ((2
Β· 3) β 3) = ((3 + 3) β 3) |
176 | 173, 173 | pncan3oi 11478 |
. . . . . . . . . . 11
β’ ((3 + 3)
β 3) = 3 |
177 | | df-3 12278 |
. . . . . . . . . . 11
β’ 3 = (2 +
1) |
178 | 175, 176,
177 | 3eqtri 2764 |
. . . . . . . . . 10
β’ ((2
Β· 3) β 3) = (2 + 1) |
179 | 178 | oveq1i 7421 |
. . . . . . . . 9
β’ (((2
Β· 3) β 3) / (2β(π + 1))) = ((2 + 1) / (2β(π + 1))) |
180 | | rpcn 12986 |
. . . . . . . . . . 11
β’
((2β(π + 1))
β β+ β (2β(π + 1)) β β) |
181 | | rpne0 12992 |
. . . . . . . . . . 11
β’
((2β(π + 1))
β β+ β (2β(π + 1)) β 0) |
182 | | 2cn 12289 |
. . . . . . . . . . . . 13
β’ 2 β
β |
183 | 182, 173 | mulcli 11223 |
. . . . . . . . . . . 12
β’ (2
Β· 3) β β |
184 | | divsubdir 11910 |
. . . . . . . . . . . 12
β’ (((2
Β· 3) β β β§ 3 β β β§ ((2β(π + 1)) β β β§
(2β(π + 1)) β 0))
β (((2 Β· 3) β 3) / (2β(π + 1))) = (((2 Β· 3) / (2β(π + 1))) β (3 /
(2β(π +
1))))) |
185 | 183, 173,
184 | mp3an12 1451 |
. . . . . . . . . . 11
β’
(((2β(π + 1))
β β β§ (2β(π + 1)) β 0) β (((2 Β· 3)
β 3) / (2β(π +
1))) = (((2 Β· 3) / (2β(π + 1))) β (3 / (2β(π + 1))))) |
186 | 180, 181,
185 | syl2anc 584 |
. . . . . . . . . 10
β’
((2β(π + 1))
β β+ β (((2 Β· 3) β 3) / (2β(π + 1))) = (((2 Β· 3) /
(2β(π + 1))) β
(3 / (2β(π +
1))))) |
187 | 45, 186 | syl 17 |
. . . . . . . . 9
β’ (π β β0
β (((2 Β· 3) β 3) / (2β(π + 1))) = (((2 Β· 3) / (2β(π + 1))) β (3 /
(2β(π +
1))))) |
188 | | divdir 11899 |
. . . . . . . . . . . 12
β’ ((2
β β β§ 1 β β β§ ((2β(π + 1)) β β β§ (2β(π + 1)) β 0)) β ((2 + 1)
/ (2β(π + 1))) = ((2 /
(2β(π + 1))) + (1 /
(2β(π +
1))))) |
189 | 182, 162,
188 | mp3an12 1451 |
. . . . . . . . . . 11
β’
(((2β(π + 1))
β β β§ (2β(π + 1)) β 0) β ((2 + 1) /
(2β(π + 1))) = ((2 /
(2β(π + 1))) + (1 /
(2β(π +
1))))) |
190 | 180, 181,
189 | syl2anc 584 |
. . . . . . . . . 10
β’
((2β(π + 1))
β β+ β ((2 + 1) / (2β(π + 1))) = ((2 / (2β(π + 1))) + (1 / (2β(π + 1))))) |
191 | 45, 190 | syl 17 |
. . . . . . . . 9
β’ (π β β0
β ((2 + 1) / (2β(π + 1))) = ((2 / (2β(π + 1))) + (1 / (2β(π + 1))))) |
192 | 179, 187,
191 | 3eqtr3a 2796 |
. . . . . . . 8
β’ (π β β0
β (((2 Β· 3) / (2β(π + 1))) β (3 / (2β(π + 1)))) = ((2 / (2β(π + 1))) + (1 / (2β(π + 1))))) |
193 | | rpcn 12986 |
. . . . . . . . . . . 12
β’
((2βπ) β
β+ β (2βπ) β β) |
194 | | rpne0 12992 |
. . . . . . . . . . . 12
β’
((2βπ) β
β+ β (2βπ) β 0) |
195 | | 2cnne0 12424 |
. . . . . . . . . . . . 13
β’ (2 β
β β§ 2 β 0) |
196 | | divcan5 11918 |
. . . . . . . . . . . . 13
β’ ((3
β β β§ ((2βπ) β β β§ (2βπ) β 0) β§ (2 β
β β§ 2 β 0)) β ((2 Β· 3) / (2 Β· (2βπ))) = (3 / (2βπ))) |
197 | 173, 195,
196 | mp3an13 1452 |
. . . . . . . . . . . 12
β’
(((2βπ) β
β β§ (2βπ)
β 0) β ((2 Β· 3) / (2 Β· (2βπ))) = (3 / (2βπ))) |
198 | 193, 194,
197 | syl2anc 584 |
. . . . . . . . . . 11
β’
((2βπ) β
β+ β ((2 Β· 3) / (2 Β· (2βπ))) = (3 / (2βπ))) |
199 | 51, 198 | syl 17 |
. . . . . . . . . 10
β’ (π β β0
β ((2 Β· 3) / (2 Β· (2βπ))) = (3 / (2βπ))) |
200 | 51, 193 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β β0
β (2βπ) β
β) |
201 | | mulcom 11198 |
. . . . . . . . . . . . 13
β’ ((2
β β β§ (2βπ) β β) β (2 Β·
(2βπ)) =
((2βπ) Β·
2)) |
202 | 182, 200,
201 | sylancr 587 |
. . . . . . . . . . . 12
β’ (π β β0
β (2 Β· (2βπ)) = ((2βπ) Β· 2)) |
203 | | expp1 14036 |
. . . . . . . . . . . . 13
β’ ((2
β β β§ π
β β0) β (2β(π + 1)) = ((2βπ) Β· 2)) |
204 | 182, 203 | mpan 688 |
. . . . . . . . . . . 12
β’ (π β β0
β (2β(π + 1)) =
((2βπ) Β·
2)) |
205 | 202, 204 | eqtr4d 2775 |
. . . . . . . . . . 11
β’ (π β β0
β (2 Β· (2βπ)) = (2β(π + 1))) |
206 | 205 | oveq2d 7427 |
. . . . . . . . . 10
β’ (π β β0
β ((2 Β· 3) / (2 Β· (2βπ))) = ((2 Β· 3) / (2β(π + 1)))) |
207 | 199, 206 | eqtr3d 2774 |
. . . . . . . . 9
β’ (π β β0
β (3 / (2βπ)) =
((2 Β· 3) / (2β(π + 1)))) |
208 | 207 | oveq1d 7426 |
. . . . . . . 8
β’ (π β β0
β ((3 / (2βπ))
β (3 / (2β(π +
1)))) = (((2 Β· 3) / (2β(π + 1))) β (3 / (2β(π + 1))))) |
209 | | divcan5 11918 |
. . . . . . . . . . . . 13
β’ ((1
β β β§ ((2βπ) β β β§ (2βπ) β 0) β§ (2 β
β β§ 2 β 0)) β ((2 Β· 1) / (2 Β· (2βπ))) = (1 / (2βπ))) |
210 | 162, 195,
209 | mp3an13 1452 |
. . . . . . . . . . . 12
β’
(((2βπ) β
β β§ (2βπ)
β 0) β ((2 Β· 1) / (2 Β· (2βπ))) = (1 / (2βπ))) |
211 | 193, 194,
210 | syl2anc 584 |
. . . . . . . . . . 11
β’
((2βπ) β
β+ β ((2 Β· 1) / (2 Β· (2βπ))) = (1 / (2βπ))) |
212 | 51, 211 | syl 17 |
. . . . . . . . . 10
β’ (π β β0
β ((2 Β· 1) / (2 Β· (2βπ))) = (1 / (2βπ))) |
213 | | 2t1e2 12377 |
. . . . . . . . . . . 12
β’ (2
Β· 1) = 2 |
214 | 213 | a1i 11 |
. . . . . . . . . . 11
β’ (π β β0
β (2 Β· 1) = 2) |
215 | 214, 205 | oveq12d 7429 |
. . . . . . . . . 10
β’ (π β β0
β ((2 Β· 1) / (2 Β· (2βπ))) = (2 / (2β(π + 1)))) |
216 | 212, 215 | eqtr3d 2774 |
. . . . . . . . 9
β’ (π β β0
β (1 / (2βπ)) =
(2 / (2β(π +
1)))) |
217 | 216 | oveq1d 7426 |
. . . . . . . 8
β’ (π β β0
β ((1 / (2βπ)) +
(1 / (2β(π + 1)))) =
((2 / (2β(π + 1))) +
(1 / (2β(π +
1))))) |
218 | 192, 208,
217 | 3eqtr4d 2782 |
. . . . . . 7
β’ (π β β0
β ((3 / (2βπ))
β (3 / (2β(π +
1)))) = ((1 / (2βπ)) +
(1 / (2β(π +
1))))) |
219 | 218 | adantl 482 |
. . . . . 6
β’ ((π β§ π β β0) β ((3 /
(2βπ)) β (3 /
(2β(π + 1)))) = ((1 /
(2βπ)) + (1 /
(2β(π +
1))))) |
220 | 141, 172,
219 | 3brtr4d 5180 |
. . . . 5
β’ ((π β§ π β β0) β ((πβ(π + 1))π·(πβπ)) β€ ((3 / (2βπ)) β (3 / (2β(π + 1))))) |
221 | | blss2 23917 |
. . . . 5
β’ (((π· β (βMetβπ) β§ (πβ(π + 1)) β π β§ (πβπ) β π) β§ ((3 / (2β(π + 1))) β β β§ (3 /
(2βπ)) β β
β§ ((πβ(π + 1))π·(πβπ)) β€ ((3 / (2βπ)) β (3 / (2β(π + 1)))))) β ((πβ(π + 1))(ballβπ·)(3 / (2β(π + 1)))) β ((πβπ)(ballβπ·)(3 / (2βπ)))) |
222 | 7, 31, 40, 48, 54, 220, 221 | syl33anc 1385 |
. . . 4
β’ ((π β§ π β β0) β ((πβ(π + 1))(ballβπ·)(3 / (2β(π + 1)))) β ((πβπ)(ballβπ·)(3 / (2βπ)))) |
223 | 1, 222 | sylan2 593 |
. . 3
β’ ((π β§ π β β) β ((πβ(π + 1))(ballβπ·)(3 / (2β(π + 1)))) β ((πβπ)(ballβπ·)(3 / (2βπ)))) |
224 | | peano2nn 12226 |
. . . . . . 7
β’ (π β β β (π + 1) β
β) |
225 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = (π + 1) β (πβπ) = (πβ(π + 1))) |
226 | | oveq2 7419 |
. . . . . . . . . 10
β’ (π = (π + 1) β (2βπ) = (2β(π + 1))) |
227 | 226 | oveq2d 7427 |
. . . . . . . . 9
β’ (π = (π + 1) β (3 / (2βπ)) = (3 / (2β(π + 1)))) |
228 | 225, 227 | opeq12d 4881 |
. . . . . . . 8
β’ (π = (π + 1) β β¨(πβπ), (3 / (2βπ))β© = β¨(πβ(π + 1)), (3 / (2β(π + 1)))β©) |
229 | | heibor.12 |
. . . . . . . 8
β’ π = (π β β β¦ β¨(πβπ), (3 / (2βπ))β©) |
230 | | opex 5464 |
. . . . . . . 8
β’
β¨(πβ(π + 1)), (3 / (2β(π + 1)))β© β V |
231 | 228, 229,
230 | fvmpt 6998 |
. . . . . . 7
β’ ((π + 1) β β β
(πβ(π + 1)) = β¨(πβ(π + 1)), (3 / (2β(π + 1)))β©) |
232 | 224, 231 | syl 17 |
. . . . . 6
β’ (π β β β (πβ(π + 1)) = β¨(πβ(π + 1)), (3 / (2β(π + 1)))β©) |
233 | 232 | adantl 482 |
. . . . 5
β’ ((π β§ π β β) β (πβ(π + 1)) = β¨(πβ(π + 1)), (3 / (2β(π + 1)))β©) |
234 | 233 | fveq2d 6895 |
. . . 4
β’ ((π β§ π β β) β ((ballβπ·)β(πβ(π + 1))) = ((ballβπ·)ββ¨(πβ(π + 1)), (3 / (2β(π + 1)))β©)) |
235 | | df-ov 7414 |
. . . 4
β’ ((πβ(π + 1))(ballβπ·)(3 / (2β(π + 1)))) = ((ballβπ·)ββ¨(πβ(π + 1)), (3 / (2β(π + 1)))β©) |
236 | 234, 235 | eqtr4di 2790 |
. . 3
β’ ((π β§ π β β) β ((ballβπ·)β(πβ(π + 1))) = ((πβ(π + 1))(ballβπ·)(3 / (2β(π + 1))))) |
237 | | fveq2 6891 |
. . . . . . . 8
β’ (π = π β (πβπ) = (πβπ)) |
238 | | oveq2 7419 |
. . . . . . . . 9
β’ (π = π β (2βπ) = (2βπ)) |
239 | 238 | oveq2d 7427 |
. . . . . . . 8
β’ (π = π β (3 / (2βπ)) = (3 / (2βπ))) |
240 | 237, 239 | opeq12d 4881 |
. . . . . . 7
β’ (π = π β β¨(πβπ), (3 / (2βπ))β© = β¨(πβπ), (3 / (2βπ))β©) |
241 | | opex 5464 |
. . . . . . 7
β’
β¨(πβπ), (3 / (2βπ))β© β
V |
242 | 240, 229,
241 | fvmpt 6998 |
. . . . . 6
β’ (π β β β (πβπ) = β¨(πβπ), (3 / (2βπ))β©) |
243 | 242 | fveq2d 6895 |
. . . . 5
β’ (π β β β
((ballβπ·)β(πβπ)) = ((ballβπ·)ββ¨(πβπ), (3 / (2βπ))β©)) |
244 | | df-ov 7414 |
. . . . 5
β’ ((πβπ)(ballβπ·)(3 / (2βπ))) = ((ballβπ·)ββ¨(πβπ), (3 / (2βπ))β©) |
245 | 243, 244 | eqtr4di 2790 |
. . . 4
β’ (π β β β
((ballβπ·)β(πβπ)) = ((πβπ)(ballβπ·)(3 / (2βπ)))) |
246 | 245 | adantl 482 |
. . 3
β’ ((π β§ π β β) β ((ballβπ·)β(πβπ)) = ((πβπ)(ballβπ·)(3 / (2βπ)))) |
247 | 223, 236,
246 | 3sstr4d 4029 |
. 2
β’ ((π β§ π β β) β ((ballβπ·)β(πβ(π + 1))) β ((ballβπ·)β(πβπ))) |
248 | 247 | ralrimiva 3146 |
1
β’ (π β βπ β β ((ballβπ·)β(πβ(π + 1))) β ((ballβπ·)β(πβπ))) |