Proof of Theorem heiborlem6
Step | Hyp | Ref
| Expression |
1 | | nnnn0 12097 |
. . . 4
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
2 | | heibor.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
3 | | cmetmet 24183 |
. . . . . . . 8
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
5 | | metxmet 23232 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
7 | 6 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋)) |
8 | | heibor.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
9 | | inss1 4143 |
. . . . . . . . 9
⊢
(𝒫 𝑋 ∩
Fin) ⊆ 𝒫 𝑋 |
10 | | fss 6562 |
. . . . . . . . 9
⊢ ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫
𝑋 ∩ Fin) ⊆
𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋) |
11 | 8, 9, 10 | sylancl 589 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ0⟶𝒫 𝑋) |
12 | | peano2nn0 12130 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
13 | | ffvelrn 6902 |
. . . . . . . 8
⊢ ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) →
(𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋) |
14 | 11, 12, 13 | syl2an 599 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋) |
15 | 14 | elpwid 4524 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋) |
16 | | heibor.1 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
17 | | heibor.3 |
. . . . . . . . 9
⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
18 | | heibor.4 |
. . . . . . . . 9
⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
19 | | heibor.5 |
. . . . . . . . 9
⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
20 | | heibor.8 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
21 | | heibor.9 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
22 | | heibor.10 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶𝐺0) |
23 | | heibor.11 |
. . . . . . . . 9
⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
24 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 35709 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) →
(𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)) |
25 | 12, 24 | sylan2 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)) |
26 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝑆‘(𝑘 + 1)) ∈ V |
27 | | ovex 7246 |
. . . . . . . . 9
⊢ (𝑘 + 1) ∈ V |
28 | 16, 17, 18, 26, 27 | heiborlem2 35707 |
. . . . . . . 8
⊢ ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾)) |
29 | 28 | simp2bi 1148 |
. . . . . . 7
⊢ ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1))) |
30 | 25, 29 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1))) |
31 | 15, 30 | sseldd 3902 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋) |
32 | 11 | ffvelrnda 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝒫 𝑋) |
33 | 32 | elpwid 4524 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ⊆ 𝑋) |
34 | 16, 17, 18, 19, 2, 8, 20, 21, 22, 23 | heiborlem4 35709 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
35 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝑆‘𝑘) ∈ V |
36 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑘 ∈ V |
37 | 16, 17, 18, 35, 36 | heiborlem2 35707 |
. . . . . . . 8
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
38 | 37 | simp2bi 1148 |
. . . . . . 7
⊢ ((𝑆‘𝑘)𝐺𝑘 → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
39 | 34, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ (𝐹‘𝑘)) |
40 | 33, 39 | sseldd 3902 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘) ∈ 𝑋) |
41 | | 3re 11910 |
. . . . . 6
⊢ 3 ∈
ℝ |
42 | | 2nn 11903 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
43 | | nnexpcl 13648 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ (𝑘 +
1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ) |
44 | 42, 12, 43 | sylancr 590 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1))
∈ ℕ) |
45 | 44 | nnrpd 12626 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1))
∈ ℝ+) |
46 | 45 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑(𝑘 + 1)) ∈
ℝ+) |
47 | | rerpdivcl 12616 |
. . . . . 6
⊢ ((3
∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3
/ (2↑(𝑘 + 1))) ∈
ℝ) |
48 | 41, 46, 47 | sylancr 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (3 /
(2↑(𝑘 + 1))) ∈
ℝ) |
49 | | nnexpcl 13648 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
50 | 42, 49 | mpan 690 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℕ) |
51 | 50 | nnrpd 12626 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℝ+) |
52 | 51 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑𝑘) ∈
ℝ+) |
53 | | rerpdivcl 12616 |
. . . . . 6
⊢ ((3
∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 /
(2↑𝑘)) ∈
ℝ) |
54 | 41, 52, 53 | sylancr 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (3 /
(2↑𝑘)) ∈
ℝ) |
55 | | oveq1 7220 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑆‘𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑚)))) |
56 | | oveq2 7221 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) |
57 | 56 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘))) |
58 | 57 | oveq2d 7229 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
59 | | ovex 7246 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V |
60 | 55, 58, 19, 59 | ovmpo 7369 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝑘) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
61 | 40, 60 | sylancom 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) = ((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘)))) |
62 | | df-br 5054 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ 〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺) |
63 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝑇‘𝑥) = (𝑇‘〈(𝑆‘𝑘), 𝑘〉)) |
64 | | df-ov 7216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆‘𝑘)𝑇𝑘) = (𝑇‘〈(𝑆‘𝑘), 𝑘〉) |
65 | 63, 64 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝑇‘𝑥) = ((𝑆‘𝑘)𝑇𝑘)) |
66 | 35, 36 | op2ndd 7772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (2nd ‘𝑥) = 𝑘) |
67 | 66 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((2nd ‘𝑥) + 1) = (𝑘 + 1)) |
68 | 65, 67 | breq12d 5066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ↔ ((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1))) |
69 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝐵‘𝑥) = (𝐵‘〈(𝑆‘𝑘), 𝑘〉)) |
70 | | df-ov 7216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆‘𝑘)𝐵𝑘) = (𝐵‘〈(𝑆‘𝑘), 𝑘〉) |
71 | 69, 70 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (𝐵‘𝑥) = ((𝑆‘𝑘)𝐵𝑘)) |
72 | 65, 67 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1)) = (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) |
73 | 71, 72 | ineq12d 4128 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) = (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)))) |
74 | 73 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)) |
75 | 68, 74 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈(𝑆‘𝑘), 𝑘〉 → (((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
76 | 75 | rspccv 3534 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) → (〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
77 | 21, 76 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (〈(𝑆‘𝑘), 𝑘〉 ∈ 𝐺 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
78 | 62, 77 | syl5bi 245 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑆‘𝑘)𝐺𝑘 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
79 | 78 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐺𝑘 → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))) |
80 | 34, 79 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)) |
81 | 80 | simpld 498 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1)) |
82 | | ovex 7246 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆‘𝑘)𝑇𝑘) ∈ V |
83 | 16, 17, 18, 82, 27 | heiborlem2 35707 |
. . . . . . . . . . . . . 14
⊢ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧
((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾)) |
84 | 83 | simp2bi 1148 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1))) |
85 | 81, 84 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1))) |
86 | 15, 85 | sseldd 3902 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) |
87 | 12 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
88 | | oveq1 7220 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑆‘𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚)))) |
89 | | oveq2 7221 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1))) |
90 | 89 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1)))) |
91 | 90 | oveq2d 7229 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 + 1) → (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
92 | | ovex 7246 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V |
93 | 88, 91, 19, 92 | ovmpo 7369 |
. . . . . . . . . . 11
⊢ ((((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) →
(((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
94 | 86, 87, 93 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) |
95 | 61, 94 | ineq12d 4128 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))) |
96 | 80 | simprd 499 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) |
97 | | 0elpw 5247 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 𝒫 𝑈 |
98 | | 0fin 8849 |
. . . . . . . . . . . . 13
⊢ ∅
∈ Fin |
99 | | elin 3882 |
. . . . . . . . . . . . 13
⊢ (∅
∈ (𝒫 𝑈 ∩
Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin)) |
100 | 97, 98, 99 | mpbir2an 711 |
. . . . . . . . . . . 12
⊢ ∅
∈ (𝒫 𝑈 ∩
Fin) |
101 | | 0ss 4311 |
. . . . . . . . . . . 12
⊢ ∅
⊆ ∪ ∅ |
102 | | unieq 4830 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = ∅ → ∪ 𝑣 =
∪ ∅) |
103 | 102 | sseq2d 3933 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ∅ → (∅
⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ ∅)) |
104 | 103 | rspcev 3537 |
. . . . . . . . . . . 12
⊢ ((∅
∈ (𝒫 𝑈 ∩
Fin) ∧ ∅ ⊆ ∪ ∅) →
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)∅ ⊆
∪ 𝑣) |
105 | 100, 101,
104 | mp2an 692 |
. . . . . . . . . . 11
⊢
∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣 |
106 | | 0ex 5200 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
107 | | sseq1 3926 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∅ → (𝑢 ⊆ ∪ 𝑣
↔ ∅ ⊆ ∪ 𝑣)) |
108 | 107 | rexbidv 3216 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ ∪ 𝑣)) |
109 | 108 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ∅ → (¬
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣
↔ ¬ ∃𝑣
∈ (𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣)) |
110 | 106, 109,
17 | elab2 3591 |
. . . . . . . . . . . 12
⊢ (∅
∈ 𝐾 ↔ ¬
∃𝑣 ∈ (𝒫
𝑈 ∩ Fin)∅ ⊆
∪ 𝑣) |
111 | 110 | con2bii 361 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)∅ ⊆ ∪ 𝑣 ↔ ¬ ∅ ∈ 𝐾) |
112 | 105, 111 | mpbi 233 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ 𝐾 |
113 | | nelne2 3039 |
. . . . . . . . . 10
⊢
(((((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅) |
114 | 96, 112, 113 | sylancl 589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝐵𝑘) ∩ (((𝑆‘𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅) |
115 | 95, 114 | eqnetrrd 3009 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅) |
116 | 51 | rpreccld 12638 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑𝑘))
∈ ℝ+) |
117 | 116 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ+) |
118 | 117 | rpred 12628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ) |
119 | 45 | rpreccld 12638 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑(𝑘 +
1))) ∈ ℝ+) |
120 | 119 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ+) |
121 | 120 | rpred 12628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ) |
122 | | rexadd 12822 |
. . . . . . . . . . . 12
⊢ (((1 /
(2↑𝑘)) ∈ ℝ
∧ (1 / (2↑(𝑘 +
1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
123 | 118, 121,
122 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
124 | 123 | breq1d 5063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) |
125 | 117 | rpxrd 12629 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑𝑘)) ∈
ℝ*) |
126 | 120 | rpxrd 12629 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(2↑(𝑘 + 1))) ∈
ℝ*) |
127 | | bldisj 23296 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 /
(2↑(𝑘 + 1))) ∈
ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅) |
128 | 127 | 3exp2 1356 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 /
(2↑(𝑘 + 1))) ∈
ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)))) |
129 | 128 | imp32 422 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 /
(2↑(𝑘 + 1))) ∈
ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
130 | 7, 40, 86, 125, 126, 129 | syl32anc 1380 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘))
+𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
131 | 124, 130 | sylbird 263 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → (((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)) |
132 | 131 | necon3ad 2953 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((((𝑆‘𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆‘𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)))) |
133 | 115, 132 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ¬ ((1
/ (2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
134 | 117, 120 | rpaddcld 12643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ∈
ℝ+) |
135 | 134 | rpred 12628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ∈
ℝ) |
136 | 4 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋)) |
137 | | metcl 23230 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆‘𝑘) ∈ 𝑋 ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∈ ℝ) |
138 | 136, 40, 86, 137 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∈ ℝ) |
139 | 135, 138 | letrid 10984 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ∨ ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))) |
140 | 139 | ord 864 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬
((1 / (2↑𝑘)) + (1 /
(2↑(𝑘 + 1)))) ≤
((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))) |
141 | 133, 140 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))) |
142 | | seqp1 13589 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
143 | | nn0uz 12476 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
144 | 142, 143 | eleq2s 2856 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (seq0(𝑇, (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
145 | 23 | fveq1i 6718 |
. . . . . . . . . . 11
⊢ (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) |
146 | 23 | fveq1i 6718 |
. . . . . . . . . . . 12
⊢ (𝑆‘𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘) |
147 | 146 | oveq1i 7223 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) |
148 | 144, 145,
147 | 3eqtr4g 2803 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))) |
149 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) |
150 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0)) |
151 | | oveq1 7220 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1)) |
152 | 150, 151 | ifbieq2d 4465 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1))) |
153 | | nn0p1nn 12129 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
154 | | nnne0 11864 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 + 1) ∈ ℕ →
(𝑘 + 1) ≠
0) |
155 | 154 | neneqd 2945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 + 1) ∈ ℕ →
¬ (𝑘 + 1) =
0) |
156 | 153, 155 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ¬ (𝑘 + 1) =
0) |
157 | 156 | iffalsed 4450 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ if((𝑘 + 1) = 0,
𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1)) |
158 | | ovex 7246 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 + 1) − 1) ∈
V |
159 | 157, 158 | eqeltrdi 2846 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ if((𝑘 + 1) = 0,
𝐶, ((𝑘 + 1) − 1)) ∈ V) |
160 | 149, 152,
12, 159 | fvmptd3 6841 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1))) |
161 | | nn0cn 12100 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
162 | | ax-1cn 10787 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
163 | | pncan 11084 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
164 | 161, 162,
163 | sylancl 589 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑘 + 1) − 1)
= 𝑘) |
165 | 160, 157,
164 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘) |
166 | 165 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((𝑆‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆‘𝑘)𝑇𝑘)) |
167 | 148, 166 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇𝑘)) |
168 | 167 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘)𝑇𝑘)) |
169 | 168 | oveq1d 7228 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) = (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘))) |
170 | | metsym 23248 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆‘𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆‘𝑘) ∈ 𝑋) → (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
171 | 136, 86, 40, 170 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑆‘𝑘)𝑇𝑘)𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
172 | 169, 171 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) = ((𝑆‘𝑘)𝐷((𝑆‘𝑘)𝑇𝑘))) |
173 | | 3cn 11911 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
174 | 173 | 2timesi 11968 |
. . . . . . . . . . . 12
⊢ (2
· 3) = (3 + 3) |
175 | 174 | oveq1i 7223 |
. . . . . . . . . . 11
⊢ ((2
· 3) − 3) = ((3 + 3) − 3) |
176 | 173, 173 | pncan3oi 11094 |
. . . . . . . . . . 11
⊢ ((3 + 3)
− 3) = 3 |
177 | | df-3 11894 |
. . . . . . . . . . 11
⊢ 3 = (2 +
1) |
178 | 175, 176,
177 | 3eqtri 2769 |
. . . . . . . . . 10
⊢ ((2
· 3) − 3) = (2 + 1) |
179 | 178 | oveq1i 7223 |
. . . . . . . . 9
⊢ (((2
· 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1))) |
180 | | rpcn 12596 |
. . . . . . . . . . 11
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ) |
181 | | rpne0 12602 |
. . . . . . . . . . 11
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0) |
182 | | 2cn 11905 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
183 | 182, 173 | mulcli 10840 |
. . . . . . . . . . . 12
⊢ (2
· 3) ∈ ℂ |
184 | | divsubdir 11526 |
. . . . . . . . . . . 12
⊢ (((2
· 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧
(2↑(𝑘 + 1)) ≠ 0))
→ (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 /
(2↑(𝑘 +
1))))) |
185 | 183, 173,
184 | mp3an12 1453 |
. . . . . . . . . . 11
⊢
(((2↑(𝑘 + 1))
∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3)
− 3) / (2↑(𝑘 +
1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1))))) |
186 | 180, 181,
185 | syl2anc 587 |
. . . . . . . . . 10
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) /
(2↑(𝑘 + 1))) −
(3 / (2↑(𝑘 +
1))))) |
187 | 45, 186 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 /
(2↑(𝑘 +
1))))) |
188 | | divdir 11515 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1)
/ (2↑(𝑘 + 1))) = ((2 /
(2↑(𝑘 + 1))) + (1 /
(2↑(𝑘 +
1))))) |
189 | 182, 162,
188 | mp3an12 1453 |
. . . . . . . . . . 11
⊢
(((2↑(𝑘 + 1))
∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) /
(2↑(𝑘 + 1))) = ((2 /
(2↑(𝑘 + 1))) + (1 /
(2↑(𝑘 +
1))))) |
190 | 180, 181,
189 | syl2anc 587 |
. . . . . . . . . 10
⊢
((2↑(𝑘 + 1))
∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
191 | 45, 190 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
192 | 179, 187,
191 | 3eqtr3a 2802 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1))))) |
193 | | rpcn 12596 |
. . . . . . . . . . . 12
⊢
((2↑𝑘) ∈
ℝ+ → (2↑𝑘) ∈ ℂ) |
194 | | rpne0 12602 |
. . . . . . . . . . . 12
⊢
((2↑𝑘) ∈
ℝ+ → (2↑𝑘) ≠ 0) |
195 | | 2cnne0 12040 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
196 | | divcan5 11534 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
197 | 173, 195,
196 | mp3an13 1454 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
198 | 193, 194,
197 | syl2anc 587 |
. . . . . . . . . . 11
⊢
((2↑𝑘) ∈
ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
199 | 51, 198 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘))) |
200 | 51, 193 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℂ) |
201 | | mulcom 10815 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 ·
(2↑𝑘)) =
((2↑𝑘) ·
2)) |
202 | 182, 200,
201 | sylancr 590 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (2 · (2↑𝑘)) = ((2↑𝑘) · 2)) |
203 | | expp1 13642 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2)) |
204 | 182, 203 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (2↑(𝑘 + 1)) =
((2↑𝑘) ·
2)) |
205 | 202, 204 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (2 · (2↑𝑘)) = (2↑(𝑘 + 1))) |
206 | 205 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1)))) |
207 | 199, 206 | eqtr3d 2779 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (3 / (2↑𝑘)) =
((2 · 3) / (2↑(𝑘 + 1)))) |
208 | 207 | oveq1d 7228 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((3 / (2↑𝑘))
− (3 / (2↑(𝑘 +
1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1))))) |
209 | | divcan5 11534 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
210 | 162, 195,
209 | mp3an13 1454 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
211 | 193, 194,
210 | syl2anc 587 |
. . . . . . . . . . 11
⊢
((2↑𝑘) ∈
ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
212 | 51, 211 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘))) |
213 | | 2t1e2 11993 |
. . . . . . . . . . . 12
⊢ (2
· 1) = 2 |
214 | 213 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (2 · 1) = 2) |
215 | 214, 205 | oveq12d 7231 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1)))) |
216 | 212, 215 | eqtr3d 2779 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (1 / (2↑𝑘)) =
(2 / (2↑(𝑘 +
1)))) |
217 | 216 | oveq1d 7228 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((1 / (2↑𝑘)) +
(1 / (2↑(𝑘 + 1)))) =
((2 / (2↑(𝑘 + 1))) +
(1 / (2↑(𝑘 +
1))))) |
218 | 192, 208,
217 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ ((3 / (2↑𝑘))
− (3 / (2↑(𝑘 +
1)))) = ((1 / (2↑𝑘)) +
(1 / (2↑(𝑘 +
1))))) |
219 | 218 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((3 /
(2↑𝑘)) − (3 /
(2↑(𝑘 + 1)))) = ((1 /
(2↑𝑘)) + (1 /
(2↑(𝑘 +
1))))) |
220 | 141, 172,
219 | 3brtr4d 5085 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1))))) |
221 | | blss2 23302 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆‘𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 /
(2↑𝑘)) ∈ ℝ
∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆‘𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
222 | 7, 31, 40, 48, 54, 220, 221 | syl33anc 1387 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
223 | 1, 222 | sylan2 596 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
224 | | peano2nn 11842 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
225 | | fveq2 6717 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (𝑆‘𝑛) = (𝑆‘(𝑘 + 1))) |
226 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1))) |
227 | 226 | oveq2d 7229 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1)))) |
228 | 225, 227 | opeq12d 4792 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 + 1) → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
229 | | heibor.12 |
. . . . . . . 8
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
230 | | opex 5348 |
. . . . . . . 8
⊢
〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉 ∈ V |
231 | 228, 229,
230 | fvmpt 6818 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ ℕ →
(𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
232 | 224, 231 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
233 | 232 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = 〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
234 | 233 | fveq2d 6721 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉)) |
235 | | df-ov 7216 |
. . . 4
⊢ ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘〈(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))〉) |
236 | 234, 235 | eqtr4di 2796 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1))))) |
237 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) |
238 | | oveq2 7221 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) |
239 | 238 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
240 | 237, 239 | opeq12d 4792 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
241 | | opex 5348 |
. . . . . . 7
⊢
〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈
V |
242 | 240, 229,
241 | fvmpt 6818 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
243 | 242 | fveq2d 6721 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
((ball‘𝐷)‘(𝑀‘𝑘)) = ((ball‘𝐷)‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
244 | | df-ov 7216 |
. . . . 5
⊢ ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
245 | 243, 244 | eqtr4di 2796 |
. . . 4
⊢ (𝑘 ∈ ℕ →
((ball‘𝐷)‘(𝑀‘𝑘)) = ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
246 | 245 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘𝑘)) = ((𝑆‘𝑘)(ball‘𝐷)(3 / (2↑𝑘)))) |
247 | 223, 236,
246 | 3sstr4d 3948 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
248 | 247 | ralrimiva 3105 |
1
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |