Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem6 Structured version   Visualization version   GIF version

Theorem heiborlem6 37817
Description: Lemma for heibor 37822. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem6 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚)   𝐶(𝑥,𝑧,𝑘)   𝑇(𝑣,𝑢,𝑘)   𝑈(𝑘,𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑘,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem6
StepHypRef Expression
1 nnnn0 12456 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 heibor.6 . . . . . . . 8 (𝜑𝐷 ∈ (CMet‘𝑋))
3 cmetmet 25193 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
42, 3syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
5 metxmet 24229 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
64, 5syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
76adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋))
8 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9 inss1 4203 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fss 6707 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋)
118, 9, 10sylancl 586 . . . . . . . 8 (𝜑𝐹:ℕ0⟶𝒫 𝑋)
12 peano2nn0 12489 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
13 ffvelcdm 7056 . . . . . . . 8 ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1411, 12, 13syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1514elpwid 4575 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋)
16 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
19 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
20 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
21 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
22 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
23 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
2416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 37815 . . . . . . . 8 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
2512, 24sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
26 fvex 6874 . . . . . . . . 9 (𝑆‘(𝑘 + 1)) ∈ V
27 ovex 7423 . . . . . . . . 9 (𝑘 + 1) ∈ V
2816, 17, 18, 26, 27heiborlem2 37813 . . . . . . . 8 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾))
2928simp2bi 1146 . . . . . . 7 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3025, 29syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3115, 30sseldd 3950 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋)
3211ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
3332elpwid 4575 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
3416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 37815 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
35 fvex 6874 . . . . . . . . 9 (𝑆𝑘) ∈ V
36 vex 3454 . . . . . . . . 9 𝑘 ∈ V
3716, 17, 18, 35, 36heiborlem2 37813 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
3837simp2bi 1146 . . . . . . 7 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
3934, 38syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
4033, 39sseldd 3950 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
41 3re 12273 . . . . . 6 3 ∈ ℝ
42 2nn 12266 . . . . . . . . 9 2 ∈ ℕ
43 nnexpcl 14046 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
4442, 12, 43sylancr 587 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℕ)
4544nnrpd 13000 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℝ+)
4645adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
47 rerpdivcl 12990 . . . . . 6 ((3 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
4841, 46, 47sylancr 587 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
49 nnexpcl 14046 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
5042, 49mpan 690 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
5150nnrpd 13000 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℝ+)
5251adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
53 rerpdivcl 12990 . . . . . 6 ((3 ∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 / (2↑𝑘)) ∈ ℝ)
5441, 52, 53sylancr 587 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑𝑘)) ∈ ℝ)
55 oveq1 7397 . . . . . . . . . . . 12 (𝑧 = (𝑆𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
56 oveq2 7398 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
5756oveq2d 7406 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘)))
5857oveq2d 7406 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
59 ovex 7423 . . . . . . . . . . . 12 ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V
6055, 58, 19, 59ovmpo 7552 . . . . . . . . . . 11 (((𝑆𝑘) ∈ 𝑋𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
6140, 60sylancom 588 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
62 df-br 5111 . . . . . . . . . . . . . . . . 17 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
63 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
64 df-ov 7393 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
6563, 64eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
6635, 36op2ndd 7982 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
6766oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
6865, 67breq12d 5123 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
69 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
70 df-ov 7393 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
7169, 70eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
7265, 67oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
7371, 72ineq12d 4187 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
7473eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
7568, 74anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7675rspccv 3588 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7721, 76syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7862, 77biimtrid 242 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
8034, 79mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1))
82 ovex 7423 . . . . . . . . . . . . . . 15 ((𝑆𝑘)𝑇𝑘) ∈ V
8316, 17, 18, 82, 27heiborlem2 37813 . . . . . . . . . . . . . 14 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾))
8483simp2bi 1146 . . . . . . . . . . . . 13 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8581, 84syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8615, 85sseldd 3950 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ 𝑋)
8712adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
88 oveq1 7397 . . . . . . . . . . . 12 (𝑧 = ((𝑆𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
89 oveq2 7398 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1)))
9089oveq2d 7406 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1))))
9190oveq2d 7406 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
92 ovex 7423 . . . . . . . . . . . 12 (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V
9388, 91, 19, 92ovmpo 7552 . . . . . . . . . . 11 ((((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9486, 87, 93syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9561, 94ineq12d 4187 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))))
9680simprd 495 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)
97 0elpw 5314 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑈
98 0fi 9016 . . . . . . . . . . . . 13 ∅ ∈ Fin
99 elin 3933 . . . . . . . . . . . . 13 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin))
10097, 98, 99mpbir2an 711 . . . . . . . . . . . 12 ∅ ∈ (𝒫 𝑈 ∩ Fin)
101 0ss 4366 . . . . . . . . . . . 12 ∅ ⊆
102 unieq 4885 . . . . . . . . . . . . . 14 (𝑣 = ∅ → 𝑣 = ∅)
103102sseq2d 3982 . . . . . . . . . . . . 13 (𝑣 = ∅ → (∅ ⊆ 𝑣 ↔ ∅ ⊆ ∅))
104103rspcev 3591 . . . . . . . . . . . 12 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ ∅ ⊆ ∅) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
105100, 101, 104mp2an 692 . . . . . . . . . . 11 𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣
106 0ex 5265 . . . . . . . . . . . . 13 ∅ ∈ V
107 sseq1 3975 . . . . . . . . . . . . . . 15 (𝑢 = ∅ → (𝑢 𝑣 ↔ ∅ ⊆ 𝑣))
108107rexbidv 3158 . . . . . . . . . . . . . 14 (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
109108notbid 318 . . . . . . . . . . . . 13 (𝑢 = ∅ → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
110106, 109, 17elab2 3652 . . . . . . . . . . . 12 (∅ ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
111110con2bii 357 . . . . . . . . . . 11 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣 ↔ ¬ ∅ ∈ 𝐾)
112105, 111mpbi 230 . . . . . . . . . 10 ¬ ∅ ∈ 𝐾
113 nelne2 3024 . . . . . . . . . 10 (((((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11496, 112, 113sylancl 586 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11595, 114eqnetrrd 2994 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅)
11651rpreccld 13012 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) ∈ ℝ+)
117116adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ+)
118117rpred 13002 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ)
11945rpreccld 13012 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
120119adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
121120rpred 13002 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ)
122 rexadd 13199 . . . . . . . . . . . 12 (((1 / (2↑𝑘)) ∈ ℝ ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
123118, 121, 122syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
124123breq1d 5120 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
125117rpxrd 13003 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ*)
126120rpxrd 13003 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ*)
127 bldisj 24293 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)
1281273exp2 1355 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 / (2↑(𝑘 + 1))) ∈ ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))))
129128imp32 418 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
1307, 40, 86, 125, 126, 129syl32anc 1380 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
131124, 130sylbird 260 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
132131necon3ad 2939 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
133115, 132mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
134117, 120rpaddcld 13017 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ+)
135134rpred 13002 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ)
1364adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋))
137 metcl 24227 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
138136, 40, 86, 137syl3anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
139135, 138letrid 11333 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∨ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
140139ord 864 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
141133, 140mpd 15 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
142 seqp1 13988 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
143 nn0uz 12842 . . . . . . . . . . . 12 0 = (ℤ‘0)
144142, 143eleq2s 2847 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
14523fveq1i 6862 . . . . . . . . . . 11 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
14623fveq1i 6862 . . . . . . . . . . . 12 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
147146oveq1i 7400 . . . . . . . . . . 11 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
148144, 145, 1473eqtr4g 2790 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
149 eqid 2730 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
150 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
151 oveq1 7397 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
152150, 151ifbieq2d 4518 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
153 nn0p1nn 12488 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
154 nnne0 12227 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
155154neneqd 2931 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
156153, 155syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ¬ (𝑘 + 1) = 0)
157156iffalsed 4502 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
158 ovex 7423 . . . . . . . . . . . . . 14 ((𝑘 + 1) − 1) ∈ V
159157, 158eqeltrdi 2837 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
160149, 152, 12, 159fvmptd3 6994 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
161 nn0cn 12459 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
162 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
163 pncan 11434 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
164161, 162, 163sylancl 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
165160, 157, 1643eqtrd 2769 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
166165oveq2d 7406 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
167148, 166eqtrd 2765 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
168167adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
169168oveq1d 7405 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)))
170 metsym 24245 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
171136, 86, 40, 170syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
172169, 171eqtrd 2765 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
173 3cn 12274 . . . . . . . . . . . . 13 3 ∈ ℂ
1741732timesi 12326 . . . . . . . . . . . 12 (2 · 3) = (3 + 3)
175174oveq1i 7400 . . . . . . . . . . 11 ((2 · 3) − 3) = ((3 + 3) − 3)
176173, 173pncan3oi 11444 . . . . . . . . . . 11 ((3 + 3) − 3) = 3
177 df-3 12257 . . . . . . . . . . 11 3 = (2 + 1)
178175, 176, 1773eqtri 2757 . . . . . . . . . 10 ((2 · 3) − 3) = (2 + 1)
179178oveq1i 7400 . . . . . . . . 9 (((2 · 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1)))
180 rpcn 12969 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ)
181 rpne0 12975 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0)
182 2cn 12268 . . . . . . . . . . . . 13 2 ∈ ℂ
183182, 173mulcli 11188 . . . . . . . . . . . 12 (2 · 3) ∈ ℂ
184 divsubdir 11883 . . . . . . . . . . . 12 (((2 · 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
185183, 173, 184mp3an12 1453 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
186180, 181, 185syl2anc 584 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
18745, 186syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
188 divdir 11869 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
189182, 162, 188mp3an12 1453 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
190180, 181, 189syl2anc 584 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
19145, 190syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
192179, 187, 1913eqtr3a 2789 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
193 rpcn 12969 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
194 rpne0 12975 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
195 2cnne0 12398 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
196 divcan5 11891 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
197173, 195, 196mp3an13 1454 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
198193, 194, 197syl2anc 584 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
19951, 198syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
20051, 193syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℂ)
201 mulcom 11161 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
202182, 200, 201sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
203 expp1 14040 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
204182, 203mpan 690 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
205202, 204eqtr4d 2768 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = (2↑(𝑘 + 1)))
206205oveq2d 7406 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1))))
207199, 206eqtr3d 2767 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (3 / (2↑𝑘)) = ((2 · 3) / (2↑(𝑘 + 1))))
208207oveq1d 7405 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
209 divcan5 11891 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
210162, 195, 209mp3an13 1454 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
211193, 194, 210syl2anc 584 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
21251, 211syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
213 2t1e2 12351 . . . . . . . . . . . 12 (2 · 1) = 2
214213a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · 1) = 2)
215214, 205oveq12d 7408 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1))))
216212, 215eqtr3d 2767 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) = (2 / (2↑(𝑘 + 1))))
217216oveq1d 7405 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
218192, 208, 2173eqtr4d 2775 . . . . . . 7 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
219218adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
220141, 172, 2193brtr4d 5142 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))
221 blss2 24299 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 / (2↑𝑘)) ∈ ℝ ∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2227, 31, 40, 48, 54, 220, 221syl33anc 1387 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2231, 222sylan2 593 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
224 peano2nn 12205 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
225 fveq2 6861 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (𝑆𝑛) = (𝑆‘(𝑘 + 1)))
226 oveq2 7398 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1)))
227226oveq2d 7406 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1))))
228225, 227opeq12d 4848 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
229 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
230 opex 5427 . . . . . . . 8 ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩ ∈ V
231228, 229, 230fvmpt 6971 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
232224, 231syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
233232adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
234233fveq2d 6865 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩))
235 df-ov 7393 . . . 4 ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
236234, 235eqtr4di 2783 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))))
237 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
238 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
239238oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
240237, 239opeq12d 4848 . . . . . . 7 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
241 opex 5427 . . . . . . 7 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
242240, 229, 241fvmpt 6971 . . . . . 6 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
243242fveq2d 6865 . . . . 5 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
244 df-ov 7393 . . . . 5 ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
245243, 244eqtr4di 2783 . . . 4 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
246245adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
247223, 236, 2463sstr4d 4005 . 2 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
248247ralrimiva 3126 1 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110  {copab 5172  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  2nd c2nd 7970  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cuz 12800  +crp 12958   +𝑒 cxad 13077  seqcseq 13973  cexp 14033  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261  CMetccmet 25161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-seq 13974  df-exp 14034  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-cmet 25164
This theorem is referenced by:  heiborlem8  37819  heiborlem9  37820
  Copyright terms: Public domain W3C validator