MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnvi Structured version   Visualization version   GIF version

Theorem hlnvi 30924
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlnvi.1 𝑈 ∈ CHilOLD
Assertion
Ref Expression
hlnvi 𝑈 ∈ NrmCVec

Proof of Theorem hlnvi
StepHypRef Expression
1 hlnvi.1 . 2 𝑈 ∈ CHilOLD
2 hlnv 30923 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
31, 2ax-mp 5 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  NrmCVeccnv 30616  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-cbn 30895  df-hlo 30918
This theorem is referenced by:  htthlem  30949  axhfvadd-zf  31014  axhvcom-zf  31015  axhvass-zf  31016  axhvaddid-zf  31018  axhfvmul-zf  31019  axhvmulid-zf  31020  axhvmulass-zf  31021  axhvdistr1-zf  31022  axhvdistr2-zf  31023  axhvmul0-zf  31024  axhis2-zf  31027  axhis3-zf  31028  axhcompl-zf  31030  hilcompl  31233
  Copyright terms: Public domain W3C validator