Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
hlnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | hlnv 29253 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 NrmCVeccnv 28946 CHilOLDchlo 29247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cbn 29225 df-hlo 29248 |
This theorem is referenced by: htthlem 29279 axhfvadd-zf 29344 axhvcom-zf 29345 axhvass-zf 29346 axhvaddid-zf 29348 axhfvmul-zf 29349 axhvmulid-zf 29350 axhvmulass-zf 29351 axhvdistr1-zf 29352 axhvdistr2-zf 29353 axhvmul0-zf 29354 axhis2-zf 29357 axhis3-zf 29358 axhcompl-zf 29360 hilcompl 29563 |
Copyright terms: Public domain | W3C validator |