Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
hlnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | hlnv 29154 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 NrmCVeccnv 28847 CHilOLDchlo 29148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cbn 29126 df-hlo 29149 |
This theorem is referenced by: htthlem 29180 axhfvadd-zf 29245 axhvcom-zf 29246 axhvass-zf 29247 axhvaddid-zf 29249 axhfvmul-zf 29250 axhvmulid-zf 29251 axhvmulass-zf 29252 axhvdistr1-zf 29253 axhvdistr2-zf 29254 axhvmul0-zf 29255 axhis2-zf 29258 axhis3-zf 29259 axhcompl-zf 29261 hilcompl 29464 |
Copyright terms: Public domain | W3C validator |