| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | hlnv 30820 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 NrmCVeccnv 30513 CHilOLDchlo 30814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-cbn 30792 df-hlo 30815 |
| This theorem is referenced by: htthlem 30846 axhfvadd-zf 30911 axhvcom-zf 30912 axhvass-zf 30913 axhvaddid-zf 30915 axhfvmul-zf 30916 axhvmulid-zf 30917 axhvmulass-zf 30918 axhvdistr1-zf 30919 axhvdistr2-zf 30920 axhvmul0-zf 30921 axhis2-zf 30924 axhis3-zf 30925 axhcompl-zf 30927 hilcompl 31130 |
| Copyright terms: Public domain | W3C validator |