| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | hlnv 30869 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 NrmCVeccnv 30562 CHilOLDchlo 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-cbn 30841 df-hlo 30864 |
| This theorem is referenced by: htthlem 30895 axhfvadd-zf 30960 axhvcom-zf 30961 axhvass-zf 30962 axhvaddid-zf 30964 axhfvmul-zf 30965 axhvmulid-zf 30966 axhvmulass-zf 30967 axhvdistr1-zf 30968 axhvdistr2-zf 30969 axhvmul0-zf 30970 axhis2-zf 30973 axhis3-zf 30974 axhcompl-zf 30976 hilcompl 31179 |
| Copyright terms: Public domain | W3C validator |