| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | hlnv 30872 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 NrmCVeccnv 30565 CHilOLDchlo 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-cbn 30844 df-hlo 30867 |
| This theorem is referenced by: htthlem 30898 axhfvadd-zf 30963 axhvcom-zf 30964 axhvass-zf 30965 axhvaddid-zf 30967 axhfvmul-zf 30968 axhvmulid-zf 30969 axhvmulass-zf 30970 axhvdistr1-zf 30971 axhvdistr2-zf 30972 axhvmul0-zf 30973 axhis2-zf 30976 axhis3-zf 30977 axhcompl-zf 30979 hilcompl 31182 |
| Copyright terms: Public domain | W3C validator |