MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnvi Structured version   Visualization version   GIF version

Theorem hlnvi 29254
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlnvi.1 𝑈 ∈ CHilOLD
Assertion
Ref Expression
hlnvi 𝑈 ∈ NrmCVec

Proof of Theorem hlnvi
StepHypRef Expression
1 hlnvi.1 . 2 𝑈 ∈ CHilOLD
2 hlnv 29253 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
31, 2ax-mp 5 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  NrmCVeccnv 28946  CHilOLDchlo 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-cbn 29225  df-hlo 29248
This theorem is referenced by:  htthlem  29279  axhfvadd-zf  29344  axhvcom-zf  29345  axhvass-zf  29346  axhvaddid-zf  29348  axhfvmul-zf  29349  axhvmulid-zf  29350  axhvmulass-zf  29351  axhvdistr1-zf  29352  axhvdistr2-zf  29353  axhvmul0-zf  29354  axhis2-zf  29357  axhis3-zf  29358  axhcompl-zf  29360  hilcompl  29563
  Copyright terms: Public domain W3C validator