MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlnvi Structured version   Visualization version   GIF version

Theorem hlnvi 30921
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlnvi.1 𝑈 ∈ CHilOLD
Assertion
Ref Expression
hlnvi 𝑈 ∈ NrmCVec

Proof of Theorem hlnvi
StepHypRef Expression
1 hlnvi.1 . 2 𝑈 ∈ CHilOLD
2 hlnv 30920 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
31, 2ax-mp 5 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  NrmCVeccnv 30613  CHilOLDchlo 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-cbn 30892  df-hlo 30915
This theorem is referenced by:  htthlem  30946  axhfvadd-zf  31011  axhvcom-zf  31012  axhvass-zf  31013  axhvaddid-zf  31015  axhfvmul-zf  31016  axhvmulid-zf  31017  axhvmulass-zf  31018  axhvdistr1-zf  31019  axhvdistr2-zf  31020  axhvmul0-zf  31021  axhis2-zf  31024  axhis3-zf  31025  axhcompl-zf  31027  hilcompl  31230
  Copyright terms: Public domain W3C validator