![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
hlnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | hlnv 30920 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 NrmCVeccnv 30613 CHilOLDchlo 30914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-cbn 30892 df-hlo 30915 |
This theorem is referenced by: htthlem 30946 axhfvadd-zf 31011 axhvcom-zf 31012 axhvass-zf 31013 axhvaddid-zf 31015 axhfvmul-zf 31016 axhvmulid-zf 31017 axhvmulass-zf 31018 axhvdistr1-zf 31019 axhvdistr2-zf 31020 axhvmul0-zf 31021 axhis2-zf 31024 axhis3-zf 31025 axhcompl-zf 31027 hilcompl 31230 |
Copyright terms: Public domain | W3C validator |