Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
hlnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | hlnv 28996 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 NrmCVeccnv 28689 CHilOLDchlo 28990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-iota 6355 df-fv 6405 df-cbn 28968 df-hlo 28991 |
This theorem is referenced by: htthlem 29022 axhfvadd-zf 29087 axhvcom-zf 29088 axhvass-zf 29089 axhvaddid-zf 29091 axhfvmul-zf 29092 axhvmulid-zf 29093 axhvmulass-zf 29094 axhvdistr1-zf 29095 axhvdistr2-zf 29096 axhvmul0-zf 29097 axhis2-zf 29100 axhis3-zf 29101 axhcompl-zf 29103 hilcompl 29306 |
Copyright terms: Public domain | W3C validator |