| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlnvi | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlnvi.1 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnvi.1 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | hlnv 30875 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 NrmCVeccnv 30568 CHilOLDchlo 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-cbn 30847 df-hlo 30870 |
| This theorem is referenced by: htthlem 30901 axhfvadd-zf 30966 axhvcom-zf 30967 axhvass-zf 30968 axhvaddid-zf 30970 axhfvmul-zf 30971 axhvmulid-zf 30972 axhvmulass-zf 30973 axhvdistr1-zf 30974 axhvdistr2-zf 30975 axhvmul0-zf 30976 axhis2-zf 30979 axhis3-zf 30980 axhcompl-zf 30982 hilcompl 31185 |
| Copyright terms: Public domain | W3C validator |