Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimafv Structured version   Visualization version   GIF version

Theorem intimafv 32634
Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.)
Assertion
Ref Expression
intimafv ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6923 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
21inteqd 4915 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
3 fvex 6871 . . . . 5 (𝐹𝑥) ∈ V
43rgenw 3048 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ V
5 iinabrex 32498 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
64, 5ax-mp 5 . . 3 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
7 eqcom 2736 . . . . . 6 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87rexbii 3076 . . . . 5 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
98abbii 2796 . . . 4 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
109inteqi 4914 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
116, 10eqtr4i 2755 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
122, 11eqtr4di 2782 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  wss 3914   cint 4910   ciin 4956  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iin 4958  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  zarclsint  33862  zarcmplem  33871
  Copyright terms: Public domain W3C validator