Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimafv Structured version   Visualization version   GIF version

Theorem intimafv 32653
Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.)
Assertion
Ref Expression
intimafv ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6885 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
21inteqd 4901 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
3 fvex 6835 . . . . 5 (𝐹𝑥) ∈ V
43rgenw 3048 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ V
5 iinabrex 32513 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
64, 5ax-mp 5 . . 3 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
7 eqcom 2736 . . . . . 6 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87rexbii 3076 . . . . 5 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
98abbii 2796 . . . 4 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
109inteqi 4900 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
116, 10eqtr4i 2755 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
122, 11eqtr4di 2782 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  wss 3903   cint 4896   ciin 4942  dom cdm 5619  cima 5622  Fun wfun 6476  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iin 4944  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  zarclsint  33839  zarcmplem  33848
  Copyright terms: Public domain W3C validator