| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intimafv | Structured version Visualization version GIF version | ||
| Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
| Ref | Expression |
|---|---|
| intimafv | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn 6884 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
| 2 | 1 | inteqd 4900 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) |
| 3 | fvex 6835 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 4 | 3 | rgenw 3051 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
| 5 | iinabrex 32549 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 7 | eqcom 2738 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
| 8 | 7 | rexbii 3079 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 9 | 8 | abbii 2798 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 10 | 9 | inteqi 4899 | . . 3 ⊢ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 11 | 6, 10 | eqtr4i 2757 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} |
| 12 | 2, 11 | eqtr4di 2784 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ∩ cint 4895 ∩ ciin 4940 dom cdm 5614 “ cima 5617 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iin 4942 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: zarclsint 33885 zarcmplem 33894 |
| Copyright terms: Public domain | W3C validator |