![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimafv | Structured version Visualization version GIF version |
Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
Ref | Expression |
---|---|
intimafv | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfimafn 6966 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
2 | 1 | inteqd 4958 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) |
3 | fvex 6915 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | rgenw 3062 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V |
5 | iinabrex 32388 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
7 | eqcom 2735 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
8 | 7 | rexbii 3091 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
9 | 8 | abbii 2798 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
10 | 9 | inteqi 4957 | . . 3 ⊢ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
11 | 6, 10 | eqtr4i 2759 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} |
12 | 2, 11 | eqtr4di 2786 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 Vcvv 3473 ⊆ wss 3949 ∩ cint 4953 ∩ ciin 5001 dom cdm 5682 “ cima 5685 Fun wfun 6547 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iin 5003 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 |
This theorem is referenced by: zarclsint 33514 zarcmplem 33523 |
Copyright terms: Public domain | W3C validator |