Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimafv Structured version   Visualization version   GIF version

Theorem intimafv 32688
Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.)
Assertion
Ref Expression
intimafv ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem intimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6941 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
21inteqd 4927 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
3 fvex 6889 . . . . 5 (𝐹𝑥) ∈ V
43rgenw 3055 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ V
5 iinabrex 32550 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
64, 5ax-mp 5 . . 3 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
7 eqcom 2742 . . . . . 6 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87rexbii 3083 . . . . 5 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
98abbii 2802 . . . 4 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
109inteqi 4926 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
116, 10eqtr4i 2761 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
122, 11eqtr4di 2788 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cint 4922   ciin 4968  dom cdm 5654  cima 5657  Fun wfun 6525  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iin 4970  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  zarclsint  33903  zarcmplem  33912
  Copyright terms: Public domain W3C validator