|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intimafv | Structured version Visualization version GIF version | ||
| Description: The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| intimafv | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfimafn 6971 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
| 2 | 1 | inteqd 4951 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | 
| 3 | fvex 6919 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 4 | 3 | rgenw 3065 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V | 
| 5 | iinabrex 32582 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ V → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} | 
| 7 | eqcom 2744 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
| 8 | 7 | rexbii 3094 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) | 
| 9 | 8 | abbii 2809 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} | 
| 10 | 9 | inteqi 4950 | . . 3 ⊢ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} | 
| 11 | 6, 10 | eqtr4i 2768 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | 
| 12 | 2, 11 | eqtr4di 2795 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∩ cint 4946 ∩ ciin 4992 dom cdm 5685 “ cima 5688 Fun wfun 6555 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iin 4994 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 | 
| This theorem is referenced by: zarclsint 33871 zarcmplem 33880 | 
| Copyright terms: Public domain | W3C validator |