| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infmin | Structured version Visualization version GIF version | ||
| Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infmin.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infmin.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| infmin.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| infmin.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
| Ref | Expression |
|---|---|
| infmin | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmin.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | infmin.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | infmin.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
| 4 | infmin.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → 𝐶𝑅𝑦) | |
| 6 | breq1 5098 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
| 7 | 6 | rspcev 3573 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐶𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 8 | 4, 5, 7 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 9 | 1, 2, 3, 8 | eqinfd 9379 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 Or wor 5528 infcinf 9334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-po 5529 df-so 5530 df-cnv 5629 df-iota 6444 df-riota 7311 df-sup 9335 df-inf 9336 |
| This theorem is referenced by: infpr 9398 lbinf 12084 uzinfi 12830 lcmgcdlem 16521 ramcl2lem 16925 oms0 34333 ballotlemirc 34568 inffz 35797 supinf 42363 oninfint 43356 |
| Copyright terms: Public domain | W3C validator |