MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmin Structured version   Visualization version   GIF version

Theorem infmin 9405
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infmin.1 (𝜑𝑅 Or 𝐴)
infmin.2 (𝜑𝐶𝐴)
infmin.3 (𝜑𝐶𝐵)
infmin.4 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
Assertion
Ref Expression
infmin (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝑅   𝜑,𝑦

Proof of Theorem infmin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infmin.1 . 2 (𝜑𝑅 Or 𝐴)
2 infmin.2 . 2 (𝜑𝐶𝐴)
3 infmin.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
4 infmin.3 . . 3 (𝜑𝐶𝐵)
5 simprr 772 . . 3 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → 𝐶𝑅𝑦)
6 breq1 5098 . . . 4 (𝑧 = 𝐶 → (𝑧𝑅𝑦𝐶𝑅𝑦))
76rspcev 3579 . . 3 ((𝐶𝐵𝐶𝑅𝑦) → ∃𝑧𝐵 𝑧𝑅𝑦)
84, 5, 7syl2an2r 685 . 2 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
91, 2, 3, 8eqinfd 9395 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5095   Or wor 5530  infcinf 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-po 5531  df-so 5532  df-cnv 5631  df-iota 6442  df-riota 7310  df-sup 9351  df-inf 9352
This theorem is referenced by:  infpr  9414  lbinf  12096  uzinfi  12847  lcmgcdlem  16535  ramcl2lem  16939  oms0  34267  ballotlemirc  34502  inffz  35705  supinf  42218  oninfint  43212
  Copyright terms: Public domain W3C validator