Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infmin | Structured version Visualization version GIF version |
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infmin.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infmin.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
infmin.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infmin.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
Ref | Expression |
---|---|
infmin | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infmin.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | infmin.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | infmin.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
4 | infmin.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
5 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → 𝐶𝑅𝑦) | |
6 | breq1 5056 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
7 | 6 | rspcev 3537 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐶𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
8 | 4, 5, 7 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
9 | 1, 2, 3, 8 | eqinfd 9101 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 class class class wbr 5053 Or wor 5467 infcinf 9057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-po 5468 df-so 5469 df-cnv 5559 df-iota 6338 df-riota 7170 df-sup 9058 df-inf 9059 |
This theorem is referenced by: infpr 9119 lbinf 11785 uzinfi 12524 lcmgcdlem 16163 ramcl2lem 16562 oms0 31976 ballotlemirc 32210 inffz 33413 |
Copyright terms: Public domain | W3C validator |