MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmin Structured version   Visualization version   GIF version

Theorem infmin 9183
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infmin.1 (𝜑𝑅 Or 𝐴)
infmin.2 (𝜑𝐶𝐴)
infmin.3 (𝜑𝐶𝐵)
infmin.4 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
Assertion
Ref Expression
infmin (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝑅   𝜑,𝑦

Proof of Theorem infmin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infmin.1 . 2 (𝜑𝑅 Or 𝐴)
2 infmin.2 . 2 (𝜑𝐶𝐴)
3 infmin.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
4 infmin.3 . . 3 (𝜑𝐶𝐵)
5 simprr 769 . . 3 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → 𝐶𝑅𝑦)
6 breq1 5073 . . . 4 (𝑧 = 𝐶 → (𝑧𝑅𝑦𝐶𝑅𝑦))
76rspcev 3552 . . 3 ((𝐶𝐵𝐶𝑅𝑦) → ∃𝑧𝐵 𝑧𝑅𝑦)
84, 5, 7syl2an2r 681 . 2 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
91, 2, 3, 8eqinfd 9174 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070   Or wor 5493  infcinf 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-cnv 5588  df-iota 6376  df-riota 7212  df-sup 9131  df-inf 9132
This theorem is referenced by:  infpr  9192  lbinf  11858  uzinfi  12597  lcmgcdlem  16239  ramcl2lem  16638  oms0  32164  ballotlemirc  32398  inffz  33601
  Copyright terms: Public domain W3C validator