| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infmin | Structured version Visualization version GIF version | ||
| Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infmin.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infmin.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| infmin.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| infmin.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
| Ref | Expression |
|---|---|
| infmin | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmin.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | infmin.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | infmin.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
| 4 | infmin.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → 𝐶𝑅𝑦) | |
| 6 | breq1 5122 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
| 7 | 6 | rspcev 3601 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐶𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 8 | 4, 5, 7 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 9 | 1, 2, 3, 8 | eqinfd 9498 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 Or wor 5560 infcinf 9453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-po 5561 df-so 5562 df-cnv 5662 df-iota 6484 df-riota 7362 df-sup 9454 df-inf 9455 |
| This theorem is referenced by: infpr 9517 lbinf 12195 uzinfi 12944 lcmgcdlem 16625 ramcl2lem 17029 oms0 34329 ballotlemirc 34564 inffz 35747 supinf 42293 oninfint 43260 |
| Copyright terms: Public domain | W3C validator |