Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn2 Structured version   Visualization version   GIF version

Theorem intimasn2 43125
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intimasn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimasn 43124 . 2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})})
2 intima0 43115 . 2 𝑥𝐴 (𝑥 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})}
31, 2eqtr4di 2783 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  {csn 4622   cint 4942   ciin 4990  cima 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iin 4992  df-br 5142  df-opab 5204  df-xp 5676  df-cnv 5678  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator