Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn2 Structured version   Visualization version   GIF version

Theorem intimasn2 43633
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intimasn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimasn 43632 . 2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})})
2 intima0 43623 . 2 𝑥𝐴 (𝑥 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})}
31, 2eqtr4di 2787 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {csn 4606   cint 4926   ciin 4972  cima 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iin 4974  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator