Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn2 Structured version   Visualization version   GIF version

Theorem intimasn2 41155
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intimasn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimasn 41154 . 2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})})
2 intima0 41145 . 2 𝑥𝐴 (𝑥 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})}
31, 2eqtr4di 2797 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {csn 4558   cint 4876   ciin 4922  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iin 4924  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator