Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn2 Structured version   Visualization version   GIF version

Theorem intimasn2 43622
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intimasn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimasn 43621 . 2 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})})
2 intima0 43612 . 2 𝑥𝐴 (𝑥 “ {𝐵}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥 “ {𝐵})}
31, 2eqtr4di 2798 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = 𝑥𝐴 (𝑥 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {csn 4648   cint 4970   ciin 5016  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator