Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimasn2 | Structured version Visualization version GIF version |
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimasn2 | ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intimasn 41154 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝑥 “ {𝐵})}) | |
2 | intima0 41145 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵}) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝑥 “ {𝐵})} | |
3 | 1, 2 | eqtr4di 2797 | 1 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {csn 4558 ∩ cint 4876 ∩ ciin 4922 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iin 4924 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |