Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimass2 Structured version   Visualization version   GIF version

Theorem intimass2 43773
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimass2 ( 𝐴𝐵) ⊆ 𝑥𝐴 (𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intimass2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimass 43772 . 2 ( 𝐴𝐵) ⊆ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥𝐵)}
2 intima0 43766 . 2 𝑥𝐴 (𝑥𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥𝐵)}
31, 2sseqtrri 3980 1 ( 𝐴𝐵) ⊆ 𝑥𝐴 (𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2711  wrex 3057  wss 3898   cint 4897   ciin 4942  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iin 4944  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator