![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimass2 | Structured version Visualization version GIF version |
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimass2 | ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intimass 38788 | . 2 ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝑥 “ 𝐵)} | |
2 | intima0 38781 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝑥 “ 𝐵)} | |
3 | 1, 2 | sseqtr4i 3864 | 1 ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 {cab 2812 ∃wrex 3119 ⊆ wss 3799 ∩ cint 4698 ∩ ciin 4742 “ cima 5346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-int 4699 df-iin 4744 df-br 4875 df-opab 4937 df-xp 5349 df-cnv 5351 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |