Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimass2 Structured version   Visualization version   GIF version

Theorem intimass2 43644
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimass2 ( 𝐴𝐵) ⊆ 𝑥𝐴 (𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem intimass2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intimass 43643 . 2 ( 𝐴𝐵) ⊆ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥𝐵)}
2 intima0 43637 . 2 𝑥𝐴 (𝑥𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝑥𝐵)}
31, 2sseqtrri 3996 1 ( 𝐴𝐵) ⊆ 𝑥𝐴 (𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2707  wrex 3053  wss 3914   cint 4910   ciin 4956  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iin 4958  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator