MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablogrpo Structured version   Visualization version   GIF version

Theorem ablogrpo 30579
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ablogrpo (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)

Proof of Theorem ablogrpo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 ran 𝐺 = ran 𝐺
21isablo 30578 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
32simplbi 497 1 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  ran crn 5701  (class class class)co 7448  GrpOpcgr 30521  AbelOpcablo 30576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581  df-ov 7451  df-ablo 30577
This theorem is referenced by:  ablo32  30581  ablo4  30582  ablomuldiv  30584  ablodivdiv  30585  ablodivdiv4  30586  ablonncan  30588  ablonnncan1  30589  vcgrp  30602  isvcOLD  30611  isvciOLD  30612  cnidOLD  30614  nvgrp  30649  cnnv  30709  cnnvba  30711  cncph  30851  hilid  31193  hhnv  31197  hhba  31199  hhph  31210  hhssabloilem  31293  hhssnv  31296  ablo4pnp  37840  rngogrpo  37870  iscringd  37958
  Copyright terms: Public domain W3C validator