| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | isablo 30526 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ran crn 5615 (class class class)co 7346 GrpOpcgr 30469 AbelOpcablo 30524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6437 df-fv 6489 df-ov 7349 df-ablo 30525 |
| This theorem is referenced by: ablo32 30529 ablo4 30530 ablomuldiv 30532 ablodivdiv 30533 ablodivdiv4 30534 ablonncan 30536 ablonnncan1 30537 vcgrp 30550 isvcOLD 30559 isvciOLD 30560 cnidOLD 30562 nvgrp 30597 cnnv 30657 cnnvba 30659 cncph 30799 hilid 31141 hhnv 31145 hhba 31147 hhph 31158 hhssabloilem 31241 hhssnv 31244 ablo4pnp 37930 rngogrpo 37960 iscringd 38048 |
| Copyright terms: Public domain | W3C validator |