![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 30578 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ran crn 5701 (class class class)co 7448 GrpOpcgr 30521 AbelOpcablo 30576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 df-ov 7451 df-ablo 30577 |
This theorem is referenced by: ablo32 30581 ablo4 30582 ablomuldiv 30584 ablodivdiv 30585 ablodivdiv4 30586 ablonncan 30588 ablonnncan1 30589 vcgrp 30602 isvcOLD 30611 isvciOLD 30612 cnidOLD 30614 nvgrp 30649 cnnv 30709 cnnvba 30711 cncph 30851 hilid 31193 hhnv 31197 hhba 31199 hhph 31210 hhssabloilem 31293 hhssnv 31296 ablo4pnp 37840 rngogrpo 37870 iscringd 37958 |
Copyright terms: Public domain | W3C validator |