| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | isablo 30490 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ran crn 5620 (class class class)co 7349 GrpOpcgr 30433 AbelOpcablo 30488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6438 df-fv 6490 df-ov 7352 df-ablo 30489 |
| This theorem is referenced by: ablo32 30493 ablo4 30494 ablomuldiv 30496 ablodivdiv 30497 ablodivdiv4 30498 ablonncan 30500 ablonnncan1 30501 vcgrp 30514 isvcOLD 30523 isvciOLD 30524 cnidOLD 30526 nvgrp 30561 cnnv 30621 cnnvba 30623 cncph 30763 hilid 31105 hhnv 31109 hhba 31111 hhph 31122 hhssabloilem 31205 hhssnv 31208 ablo4pnp 37870 rngogrpo 37900 iscringd 37988 |
| Copyright terms: Public domain | W3C validator |