| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | isablo 30565 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ran crn 5686 (class class class)co 7431 GrpOpcgr 30508 AbelOpcablo 30563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-cnv 5693 df-dm 5695 df-rn 5696 df-iota 6514 df-fv 6569 df-ov 7434 df-ablo 30564 |
| This theorem is referenced by: ablo32 30568 ablo4 30569 ablomuldiv 30571 ablodivdiv 30572 ablodivdiv4 30573 ablonncan 30575 ablonnncan1 30576 vcgrp 30589 isvcOLD 30598 isvciOLD 30599 cnidOLD 30601 nvgrp 30636 cnnv 30696 cnnvba 30698 cncph 30838 hilid 31180 hhnv 31184 hhba 31186 hhph 31197 hhssabloilem 31280 hhssnv 31283 ablo4pnp 37887 rngogrpo 37917 iscringd 38005 |
| Copyright terms: Public domain | W3C validator |