MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablogrpo Structured version   Visualization version   GIF version

Theorem ablogrpo 29197
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ablogrpo (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)

Proof of Theorem ablogrpo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 ran 𝐺 = ran 𝐺
21isablo 29196 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
32simplbi 498 1 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wral 3061  ran crn 5621  (class class class)co 7337  GrpOpcgr 29139  AbelOpcablo 29194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-cnv 5628  df-dm 5630  df-rn 5631  df-iota 6431  df-fv 6487  df-ov 7340  df-ablo 29195
This theorem is referenced by:  ablo32  29199  ablo4  29200  ablomuldiv  29202  ablodivdiv  29203  ablodivdiv4  29204  ablonncan  29206  ablonnncan1  29207  vcgrp  29220  isvcOLD  29229  isvciOLD  29230  cnidOLD  29232  nvgrp  29267  cnnv  29327  cnnvba  29329  cncph  29469  hilid  29811  hhnv  29815  hhba  29817  hhph  29828  hhssabloilem  29911  hhssnv  29914  ablo4pnp  36143  rngogrpo  36173  iscringd  36261
  Copyright terms: Public domain W3C validator