| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | isablo 30475 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ran crn 5639 (class class class)co 7387 GrpOpcgr 30418 AbelOpcablo 30473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 df-ov 7390 df-ablo 30474 |
| This theorem is referenced by: ablo32 30478 ablo4 30479 ablomuldiv 30481 ablodivdiv 30482 ablodivdiv4 30483 ablonncan 30485 ablonnncan1 30486 vcgrp 30499 isvcOLD 30508 isvciOLD 30509 cnidOLD 30511 nvgrp 30546 cnnv 30606 cnnvba 30608 cncph 30748 hilid 31090 hhnv 31094 hhba 31096 hhph 31107 hhssabloilem 31190 hhssnv 31193 ablo4pnp 37874 rngogrpo 37904 iscringd 37992 |
| Copyright terms: Public domain | W3C validator |