Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 28887 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ran crn 5589 (class class class)co 7268 GrpOpcgr 28830 AbelOpcablo 28885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 df-iota 6388 df-fv 6438 df-ov 7271 df-ablo 28886 |
This theorem is referenced by: ablo32 28890 ablo4 28891 ablomuldiv 28893 ablodivdiv 28894 ablodivdiv4 28895 ablonncan 28897 ablonnncan1 28898 vcgrp 28911 isvcOLD 28920 isvciOLD 28921 cnidOLD 28923 nvgrp 28958 cnnv 29018 cnnvba 29020 cncph 29160 hilid 29502 hhnv 29506 hhba 29508 hhph 29519 hhssabloilem 29602 hhssnv 29605 ablo4pnp 36017 rngogrpo 36047 iscringd 36135 |
Copyright terms: Public domain | W3C validator |