Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 29196 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 498 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ran crn 5621 (class class class)co 7337 GrpOpcgr 29139 AbelOpcablo 29194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 df-iota 6431 df-fv 6487 df-ov 7340 df-ablo 29195 |
This theorem is referenced by: ablo32 29199 ablo4 29200 ablomuldiv 29202 ablodivdiv 29203 ablodivdiv4 29204 ablonncan 29206 ablonnncan1 29207 vcgrp 29220 isvcOLD 29229 isvciOLD 29230 cnidOLD 29232 nvgrp 29267 cnnv 29327 cnnvba 29329 cncph 29469 hilid 29811 hhnv 29815 hhba 29817 hhph 29828 hhssabloilem 29911 hhssnv 29914 ablo4pnp 36143 rngogrpo 36173 iscringd 36261 |
Copyright terms: Public domain | W3C validator |