![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 27973 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 493 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ran crn 5356 (class class class)co 6922 GrpOpcgr 27916 AbelOpcablo 27971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-cnv 5363 df-dm 5365 df-rn 5366 df-iota 6099 df-fv 6143 df-ov 6925 df-ablo 27972 |
This theorem is referenced by: ablo32 27976 ablo4 27977 ablomuldiv 27979 ablodivdiv 27980 ablodivdiv4 27981 ablonncan 27983 ablonnncan1 27984 vcgrp 27997 isvcOLD 28006 isvciOLD 28007 cnidOLD 28009 nvgrp 28044 cnnv 28104 cnnvba 28106 cncph 28246 hilid 28590 hhnv 28594 hhba 28596 hhph 28607 hhssabloilem 28690 hhssnv 28693 ablo4pnp 34303 rngogrpo 34333 iscringd 34421 |
Copyright terms: Public domain | W3C validator |