MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablogrpo Structured version   Visualization version   GIF version

Theorem ablogrpo 30483
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ablogrpo (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)

Proof of Theorem ablogrpo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 ran 𝐺 = ran 𝐺
21isablo 30482 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
32simplbi 497 1 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  ran crn 5642  (class class class)co 7390  GrpOpcgr 30425  AbelOpcablo 30480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522  df-ov 7393  df-ablo 30481
This theorem is referenced by:  ablo32  30485  ablo4  30486  ablomuldiv  30488  ablodivdiv  30489  ablodivdiv4  30490  ablonncan  30492  ablonnncan1  30493  vcgrp  30506  isvcOLD  30515  isvciOLD  30516  cnidOLD  30518  nvgrp  30553  cnnv  30613  cnnvba  30615  cncph  30755  hilid  31097  hhnv  31101  hhba  31103  hhph  31114  hhssabloilem  31197  hhssnv  31200  ablo4pnp  37881  rngogrpo  37911  iscringd  37999
  Copyright terms: Public domain W3C validator