Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 28957 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 499 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ran crn 5601 (class class class)co 7307 GrpOpcgr 28900 AbelOpcablo 28955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-cnv 5608 df-dm 5610 df-rn 5611 df-iota 6410 df-fv 6466 df-ov 7310 df-ablo 28956 |
This theorem is referenced by: ablo32 28960 ablo4 28961 ablomuldiv 28963 ablodivdiv 28964 ablodivdiv4 28965 ablonncan 28967 ablonnncan1 28968 vcgrp 28981 isvcOLD 28990 isvciOLD 28991 cnidOLD 28993 nvgrp 29028 cnnv 29088 cnnvba 29090 cncph 29230 hilid 29572 hhnv 29576 hhba 29578 hhph 29589 hhssabloilem 29672 hhssnv 29675 ablo4pnp 36086 rngogrpo 36116 iscringd 36204 |
Copyright terms: Public domain | W3C validator |