![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 30574 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ran crn 5689 (class class class)co 7430 GrpOpcgr 30517 AbelOpcablo 30572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 df-iota 6515 df-fv 6570 df-ov 7433 df-ablo 30573 |
This theorem is referenced by: ablo32 30577 ablo4 30578 ablomuldiv 30580 ablodivdiv 30581 ablodivdiv4 30582 ablonncan 30584 ablonnncan1 30585 vcgrp 30598 isvcOLD 30607 isvciOLD 30608 cnidOLD 30610 nvgrp 30645 cnnv 30705 cnnvba 30707 cncph 30847 hilid 31189 hhnv 31193 hhba 31195 hhph 31206 hhssabloilem 31289 hhssnv 31292 ablo4pnp 37866 rngogrpo 37896 iscringd 37984 |
Copyright terms: Public domain | W3C validator |