| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | isablo 30473 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ran crn 5655 (class class class)co 7403 GrpOpcgr 30416 AbelOpcablo 30471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6483 df-fv 6538 df-ov 7406 df-ablo 30472 |
| This theorem is referenced by: ablo32 30476 ablo4 30477 ablomuldiv 30479 ablodivdiv 30480 ablodivdiv4 30481 ablonncan 30483 ablonnncan1 30484 vcgrp 30497 isvcOLD 30506 isvciOLD 30507 cnidOLD 30509 nvgrp 30544 cnnv 30604 cnnvba 30606 cncph 30746 hilid 31088 hhnv 31092 hhba 31094 hhph 31105 hhssabloilem 31188 hhssnv 31191 ablo4pnp 37850 rngogrpo 37880 iscringd 37968 |
| Copyright terms: Public domain | W3C validator |