![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabloi | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isabli.1 | ⊢ 𝐺 ∈ GrpOp |
isabli.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
isabli.3 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
Ref | Expression |
---|---|
isabloi | ⊢ 𝐺 ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.1 | . 2 ⊢ 𝐺 ∈ GrpOp | |
2 | isabli.3 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
3 | 2 | rgen2 3187 | . 2 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
4 | isabli.2 | . . . 4 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
5 | 1, 4 | grporn 30423 | . . 3 ⊢ 𝑋 = ran 𝐺 |
6 | 5 | isablo 30448 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
7 | 1, 3, 6 | mpbir2an 709 | 1 ⊢ 𝐺 ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 × cxp 5676 dom cdm 5678 (class class class)co 7419 GrpOpcgr 30391 AbelOpcablo 30446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 df-ov 7422 df-grpo 30395 df-ablo 30447 |
This theorem is referenced by: cnaddabloOLD 30483 hilablo 31062 hhssabloi 31164 |
Copyright terms: Public domain | W3C validator |