MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabloi Structured version   Visualization version   GIF version

Theorem isabloi 30570
Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isabli.1 𝐺 ∈ GrpOp
isabli.2 dom 𝐺 = (𝑋 × 𝑋)
isabli.3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
isabloi 𝐺 ∈ AbelOp
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isabloi
StepHypRef Expression
1 isabli.1 . 2 𝐺 ∈ GrpOp
2 isabli.3 . . 3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
32rgen2 3199 . 2 𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
4 isabli.2 . . . 4 dom 𝐺 = (𝑋 × 𝑋)
51, 4grporn 30540 . . 3 𝑋 = ran 𝐺
65isablo 30565 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
71, 3, 6mpbir2an 711 1 𝐺 ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061   × cxp 5683  dom cdm 5685  (class class class)co 7431  GrpOpcgr 30508  AbelOpcablo 30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-ov 7434  df-grpo 30512  df-ablo 30564
This theorem is referenced by:  cnaddabloOLD  30600  hilablo  31179  hhssabloi  31281
  Copyright terms: Public domain W3C validator