Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabloi | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isabli.1 | ⊢ 𝐺 ∈ GrpOp |
isabli.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
isabli.3 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
Ref | Expression |
---|---|
isabloi | ⊢ 𝐺 ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.1 | . 2 ⊢ 𝐺 ∈ GrpOp | |
2 | isabli.3 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
3 | 2 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
4 | isabli.2 | . . . 4 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
5 | 1, 4 | grporn 28991 | . . 3 ⊢ 𝑋 = ran 𝐺 |
6 | 5 | isablo 29016 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
7 | 1, 3, 6 | mpbir2an 708 | 1 ⊢ 𝐺 ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 × cxp 5603 dom cdm 5605 (class class class)co 7313 GrpOpcgr 28959 AbelOpcablo 29014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fo 6469 df-fv 6471 df-ov 7316 df-grpo 28963 df-ablo 29015 |
This theorem is referenced by: cnaddabloOLD 29051 hilablo 29630 hhssabloi 29732 |
Copyright terms: Public domain | W3C validator |