| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabloi | Structured version Visualization version GIF version | ||
| Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isabli.1 | ⊢ 𝐺 ∈ GrpOp |
| isabli.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
| isabli.3 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| Ref | Expression |
|---|---|
| isabloi | ⊢ 𝐺 ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabli.1 | . 2 ⊢ 𝐺 ∈ GrpOp | |
| 2 | isabli.3 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 3 | 2 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
| 4 | isabli.2 | . . . 4 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
| 5 | 1, 4 | grporn 30502 | . . 3 ⊢ 𝑋 = ran 𝐺 |
| 6 | 5 | isablo 30527 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
| 7 | 1, 3, 6 | mpbir2an 711 | 1 ⊢ 𝐺 ∈ AbelOp |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 × cxp 5652 dom cdm 5654 (class class class)co 7405 GrpOpcgr 30470 AbelOpcablo 30525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-ov 7408 df-grpo 30474 df-ablo 30526 |
| This theorem is referenced by: cnaddabloOLD 30562 hilablo 31141 hhssabloi 31243 |
| Copyright terms: Public domain | W3C validator |