MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabloi Structured version   Visualization version   GIF version

Theorem isabloi 30533
Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isabli.1 𝐺 ∈ GrpOp
isabli.2 dom 𝐺 = (𝑋 × 𝑋)
isabli.3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
isabloi 𝐺 ∈ AbelOp
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isabloi
StepHypRef Expression
1 isabli.1 . 2 𝐺 ∈ GrpOp
2 isabli.3 . . 3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
32rgen2 3173 . 2 𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
4 isabli.2 . . . 4 dom 𝐺 = (𝑋 × 𝑋)
51, 4grporn 30503 . . 3 𝑋 = ran 𝐺
65isablo 30528 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
71, 3, 6mpbir2an 711 1 𝐺 ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   × cxp 5617  dom cdm 5619  (class class class)co 7352  GrpOpcgr 30471  AbelOpcablo 30526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7355  df-grpo 30475  df-ablo 30527
This theorem is referenced by:  cnaddabloOLD  30563  hilablo  31142  hhssabloi  31244
  Copyright terms: Public domain W3C validator