MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabloi Structured version   Visualization version   GIF version

Theorem isabloi 30513
Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isabli.1 𝐺 ∈ GrpOp
isabli.2 dom 𝐺 = (𝑋 × 𝑋)
isabli.3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
isabloi 𝐺 ∈ AbelOp
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isabloi
StepHypRef Expression
1 isabli.1 . 2 𝐺 ∈ GrpOp
2 isabli.3 . . 3 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
32rgen2 3169 . 2 𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
4 isabli.2 . . . 4 dom 𝐺 = (𝑋 × 𝑋)
51, 4grporn 30483 . . 3 𝑋 = ran 𝐺
65isablo 30508 . 2 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
71, 3, 6mpbir2an 711 1 𝐺 ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   × cxp 5621  dom cdm 5623  (class class class)co 7353  GrpOpcgr 30451  AbelOpcablo 30506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-grpo 30455  df-ablo 30507
This theorem is referenced by:  cnaddabloOLD  30543  hilablo  31122  hhssabloi  31224
  Copyright terms: Public domain W3C validator