MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablocom Structured version   Visualization version   GIF version

Theorem ablocom 28904
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ablocom ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))

Proof of Theorem ablocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.1 . . . . 5 𝑋 = ran 𝐺
21isablo 28902 . . . 4 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
32simprbi 497 . . 3 (𝐺 ∈ AbelOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
4 oveq1 7276 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
5 oveq2 7277 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
64, 5eqeq12d 2756 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = (𝑦𝐺𝑥) ↔ (𝐴𝐺𝑦) = (𝑦𝐺𝐴)))
7 oveq2 7277 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
8 oveq1 7276 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝐴) = (𝐵𝐺𝐴))
97, 8eqeq12d 2756 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦) = (𝑦𝐺𝐴) ↔ (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
106, 9rspc2v 3571 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
113, 10syl5com 31 . 2 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
12113impib 1115 1 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  ran crn 5590  (class class class)co 7269  GrpOpcgr 28845  AbelOpcablo 28900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-cnv 5597  df-dm 5599  df-rn 5600  df-iota 6389  df-fv 6439  df-ov 7272  df-ablo 28901
This theorem is referenced by:  ablo32  28905  ablomuldiv  28908  ablodiv32  28911  nvcom  28977  rngocom  36065  iscringd  36150
  Copyright terms: Public domain W3C validator