MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablocom Structured version   Visualization version   GIF version

Theorem ablocom 30528
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ablocom ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))

Proof of Theorem ablocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.1 . . . . 5 𝑋 = ran 𝐺
21isablo 30526 . . . 4 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
32simprbi 496 . . 3 (𝐺 ∈ AbelOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
4 oveq1 7353 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
5 oveq2 7354 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
64, 5eqeq12d 2747 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = (𝑦𝐺𝑥) ↔ (𝐴𝐺𝑦) = (𝑦𝐺𝐴)))
7 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
8 oveq1 7353 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝐴) = (𝐵𝐺𝐴))
97, 8eqeq12d 2747 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦) = (𝑦𝐺𝐴) ↔ (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
106, 9rspc2v 3583 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
113, 10syl5com 31 . 2 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)))
12113impib 1116 1 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ran crn 5615  (class class class)co 7346  GrpOpcgr 30469  AbelOpcablo 30524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-iota 6437  df-fv 6489  df-ov 7349  df-ablo 30525
This theorem is referenced by:  ablo32  30529  ablomuldiv  30532  ablodiv32  30535  nvcom  30601  rngocom  37963  iscringd  38048
  Copyright terms: Public domain W3C validator