Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablocom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablcom.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ablocom | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | isablo 28908 | . . . 4 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simprbi 497 | . . 3 ⊢ (𝐺 ∈ AbelOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
4 | oveq1 7282 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
5 | oveq2 7283 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
6 | 4, 5 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = (𝑦𝐺𝑥) ↔ (𝐴𝐺𝑦) = (𝑦𝐺𝐴))) |
7 | oveq2 7283 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
8 | oveq1 7282 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐺𝐴) = (𝐵𝐺𝐴)) | |
9 | 7, 8 | eqeq12d 2754 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦) = (𝑦𝐺𝐴) ↔ (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
10 | 6, 9 | rspc2v 3570 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐺 ∈ AbelOp → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
12 | 11 | 3impib 1115 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ran crn 5590 (class class class)co 7275 GrpOpcgr 28851 AbelOpcablo 28906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 df-ablo 28907 |
This theorem is referenced by: ablo32 28911 ablomuldiv 28914 ablodiv32 28917 nvcom 28983 rngocom 36071 iscringd 36156 |
Copyright terms: Public domain | W3C validator |