Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablocom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablcom.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ablocom | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | isablo 28809 | . . . 4 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simprbi 496 | . . 3 ⊢ (𝐺 ∈ AbelOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
4 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
5 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
6 | 4, 5 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = (𝑦𝐺𝑥) ↔ (𝐴𝐺𝑦) = (𝑦𝐺𝐴))) |
7 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
8 | oveq1 7262 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐺𝐴) = (𝐵𝐺𝐴)) | |
9 | 7, 8 | eqeq12d 2754 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦) = (𝑦𝐺𝐴) ↔ (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
10 | 6, 9 | rspc2v 3562 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐺 ∈ AbelOp → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
12 | 11 | 3impib 1114 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ran crn 5581 (class class class)co 7255 GrpOpcgr 28752 AbelOpcablo 28807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 df-ov 7258 df-ablo 28808 |
This theorem is referenced by: ablo32 28812 ablomuldiv 28815 ablodiv32 28818 nvcom 28884 rngocom 35998 iscringd 36083 |
Copyright terms: Public domain | W3C validator |