![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablocom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablcom.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ablocom | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | isablo 30376 | . . . 4 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simprbi 495 | . . 3 ⊢ (𝐺 ∈ AbelOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
4 | oveq1 7433 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
5 | oveq2 7434 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | |
6 | 4, 5 | eqeq12d 2744 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = (𝑦𝐺𝑥) ↔ (𝐴𝐺𝑦) = (𝑦𝐺𝐴))) |
7 | oveq2 7434 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
8 | oveq1 7433 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐺𝐴) = (𝐵𝐺𝐴)) | |
9 | 7, 8 | eqeq12d 2744 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦) = (𝑦𝐺𝐴) ↔ (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
10 | 6, 9 | rspc2v 3622 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝐺 ∈ AbelOp → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))) |
12 | 11 | 3impib 1113 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ran crn 5683 (class class class)co 7426 GrpOpcgr 30319 AbelOpcablo 30374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-cnv 5690 df-dm 5692 df-rn 5693 df-iota 6505 df-fv 6561 df-ov 7429 df-ablo 30375 |
This theorem is referenced by: ablo32 30379 ablomuldiv 30382 ablodiv32 30385 nvcom 30451 rngocom 37419 iscringd 37504 |
Copyright terms: Public domain | W3C validator |