![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acncc | Structured version Visualization version GIF version |
Description: An ax-cc 10427 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acncc | ⊢ AC ω = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | omex 9635 | . . . . 5 ⊢ ω ∈ V | |
3 | isacn 10036 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
4 | 1, 2, 3 | mp2an 689 | . . . 4 ⊢ (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
5 | axcc2 10429 | . . . . 5 ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
6 | elmapi 8840 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅})) | |
7 | ffvelcdm 7074 | . . . . . . . . . . 11 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
8 | eldifsni 4786 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
9 | 7, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
10 | 6, 9 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
11 | id 22 | . . . . . . . . 9 ⊢ (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
12 | 10, 11 | syl5com 31 | . . . . . . . 8 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
13 | 12 | ralimdva 3159 | . . . . . . 7 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 13 | adantld 490 | . . . . . 6 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | 14 | eximdv 1912 | . . . . 5 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
16 | 5, 15 | mpi 20 | . . . 4 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 4, 16 | mprgbir 3060 | . . 3 ⊢ 𝑥 ∈ AC ω |
18 | 17, 1 | 2th 264 | . 2 ⊢ (𝑥 ∈ AC ω ↔ 𝑥 ∈ V) |
19 | 18 | eqriv 2721 | 1 ⊢ AC ω = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 Vcvv 3466 ∖ cdif 3938 ∅c0 4315 𝒫 cpw 4595 {csn 4621 Fn wfn 6529 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ωcom 7849 ↑m cmap 8817 AC wacn 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cc 10427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-er 8700 df-map 8819 df-en 8937 df-acn 9934 |
This theorem is referenced by: iunctb 10566 |
Copyright terms: Public domain | W3C validator |