MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Visualization version   GIF version

Theorem acncc 10331
Description: An ax-cc 10326 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc AC ω = V

Proof of Theorem acncc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . 5 𝑥 ∈ V
2 omex 9533 . . . . 5 ω ∈ V
3 isacn 9935 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
41, 2, 3mp2an 692 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
5 axcc2 10328 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
6 elmapi 8773 . . . . . . . . . 10 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅}))
7 ffvelcdm 7014 . . . . . . . . . . 11 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
8 eldifsni 4739 . . . . . . . . . . 11 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
97, 8syl 17 . . . . . . . . . 10 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
106, 9sylan 580 . . . . . . . . 9 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
11 id 22 . . . . . . . . 9 (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
1210, 11syl5com 31 . . . . . . . 8 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → (𝑔𝑦) ∈ (𝑓𝑦)))
1312ralimdva 3144 . . . . . . 7 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1413adantld 490 . . . . . 6 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1514eximdv 1918 . . . . 5 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
165, 15mpi 20 . . . 4 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
174, 16mprgbir 3054 . . 3 𝑥AC ω
1817, 12th 264 . 2 (𝑥AC ω ↔ 𝑥 ∈ V)
1918eqriv 2728 1 AC ω = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  c0 4280  𝒫 cpw 4547  {csn 4573   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  m cmap 8750  AC wacn 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-acn 9835
This theorem is referenced by:  iunctb  10465
  Copyright terms: Public domain W3C validator