MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Visualization version   GIF version

Theorem acncc 10127
Description: An ax-cc 10122 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc AC ω = V

Proof of Theorem acncc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . 5 𝑥 ∈ V
2 omex 9331 . . . . 5 ω ∈ V
3 isacn 9731 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
41, 2, 3mp2an 688 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
5 axcc2 10124 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
6 elmapi 8595 . . . . . . . . . 10 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅}))
7 ffvelrn 6941 . . . . . . . . . . 11 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
8 eldifsni 4720 . . . . . . . . . . 11 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
97, 8syl 17 . . . . . . . . . 10 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
106, 9sylan 579 . . . . . . . . 9 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
11 id 22 . . . . . . . . 9 (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
1210, 11syl5com 31 . . . . . . . 8 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → (𝑔𝑦) ∈ (𝑓𝑦)))
1312ralimdva 3102 . . . . . . 7 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1413adantld 490 . . . . . 6 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1514eximdv 1921 . . . . 5 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
165, 15mpi 20 . . . 4 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
174, 16mprgbir 3078 . . 3 𝑥AC ω
1817, 12th 263 . 2 (𝑥AC ω ↔ 𝑥 ∈ V)
1918eqriv 2735 1 AC ω = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  m cmap 8573  AC wacn 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-acn 9631
This theorem is referenced by:  iunctb  10261
  Copyright terms: Public domain W3C validator