![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acncc | Structured version Visualization version GIF version |
Description: An ax-cc 10372 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acncc | ⊢ AC ω = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3450 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | omex 9580 | . . . . 5 ⊢ ω ∈ V | |
3 | isacn 9981 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
4 | 1, 2, 3 | mp2an 691 | . . . 4 ⊢ (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
5 | axcc2 10374 | . . . . 5 ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
6 | elmapi 8788 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅})) | |
7 | ffvelcdm 7033 | . . . . . . . . . . 11 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
8 | eldifsni 4751 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
9 | 7, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
10 | 6, 9 | sylan 581 | . . . . . . . . 9 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
11 | id 22 | . . . . . . . . 9 ⊢ (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
12 | 10, 11 | syl5com 31 | . . . . . . . 8 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
13 | 12 | ralimdva 3165 | . . . . . . 7 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 13 | adantld 492 | . . . . . 6 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | 14 | eximdv 1921 | . . . . 5 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
16 | 5, 15 | mpi 20 | . . . 4 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 4, 16 | mprgbir 3072 | . . 3 ⊢ 𝑥 ∈ AC ω |
18 | 17, 1 | 2th 264 | . 2 ⊢ (𝑥 ∈ AC ω ↔ 𝑥 ∈ V) |
19 | 18 | eqriv 2734 | 1 ⊢ AC ω = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 Vcvv 3446 ∖ cdif 3908 ∅c0 4283 𝒫 cpw 4561 {csn 4587 Fn wfn 6492 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 ωcom 7803 ↑m cmap 8766 AC wacn 9875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9578 ax-cc 10372 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-er 8649 df-map 8768 df-en 8885 df-acn 9879 |
This theorem is referenced by: iunctb 10511 |
Copyright terms: Public domain | W3C validator |