![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acncc | Structured version Visualization version GIF version |
Description: An ax-cc 10426 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acncc | ⊢ AC ω = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | omex 9634 | . . . . 5 ⊢ ω ∈ V | |
3 | isacn 10035 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
4 | 1, 2, 3 | mp2an 690 | . . . 4 ⊢ (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
5 | axcc2 10428 | . . . . 5 ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
6 | elmapi 8839 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅})) | |
7 | ffvelcdm 7080 | . . . . . . . . . . 11 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
8 | eldifsni 4792 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
9 | 7, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
10 | 6, 9 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
11 | id 22 | . . . . . . . . 9 ⊢ (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
12 | 10, 11 | syl5com 31 | . . . . . . . 8 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
13 | 12 | ralimdva 3167 | . . . . . . 7 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 13 | adantld 491 | . . . . . 6 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | 14 | eximdv 1920 | . . . . 5 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
16 | 5, 15 | mpi 20 | . . . 4 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 4, 16 | mprgbir 3068 | . . 3 ⊢ 𝑥 ∈ AC ω |
18 | 17, 1 | 2th 263 | . 2 ⊢ (𝑥 ∈ AC ω ↔ 𝑥 ∈ V) |
19 | 18 | eqriv 2729 | 1 ⊢ AC ω = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 Vcvv 3474 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ωcom 7851 ↑m cmap 8816 AC wacn 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-acn 9933 |
This theorem is referenced by: iunctb 10565 |
Copyright terms: Public domain | W3C validator |