MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Visualization version   GIF version

Theorem acncc 10019
Description: An ax-cc 10014 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc AC ω = V

Proof of Theorem acncc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3402 . . . . 5 𝑥 ∈ V
2 omex 9236 . . . . 5 ω ∈ V
3 isacn 9623 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
41, 2, 3mp2an 692 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
5 axcc2 10016 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
6 elmapi 8508 . . . . . . . . . 10 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅}))
7 ffvelrn 6880 . . . . . . . . . . 11 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
8 eldifsni 4689 . . . . . . . . . . 11 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
97, 8syl 17 . . . . . . . . . 10 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
106, 9sylan 583 . . . . . . . . 9 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
11 id 22 . . . . . . . . 9 (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
1210, 11syl5com 31 . . . . . . . 8 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → (𝑔𝑦) ∈ (𝑓𝑦)))
1312ralimdva 3090 . . . . . . 7 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1413adantld 494 . . . . . 6 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1514eximdv 1925 . . . . 5 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
165, 15mpi 20 . . . 4 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
174, 16mprgbir 3066 . . 3 𝑥AC ω
1817, 12th 267 . 2 (𝑥AC ω ↔ 𝑥 ∈ V)
1918eqriv 2733 1 AC ω = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  Vcvv 3398  cdif 3850  c0 4223  𝒫 cpw 4499  {csn 4527   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  ωcom 7622  m cmap 8486  AC wacn 9519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cc 10014
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-er 8369  df-map 8488  df-en 8605  df-acn 9523
This theorem is referenced by:  iunctb  10153
  Copyright terms: Public domain W3C validator