MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acncc Structured version   Visualization version   GIF version

Theorem acncc 10377
Description: An ax-cc 10372 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acncc AC ω = V

Proof of Theorem acncc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3450 . . . . 5 𝑥 ∈ V
2 omex 9580 . . . . 5 ω ∈ V
3 isacn 9981 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
41, 2, 3mp2an 691 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
5 axcc2 10374 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
6 elmapi 8788 . . . . . . . . . 10 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅}))
7 ffvelcdm 7033 . . . . . . . . . . 11 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
8 eldifsni 4751 . . . . . . . . . . 11 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
97, 8syl 17 . . . . . . . . . 10 ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
106, 9sylan 581 . . . . . . . . 9 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓𝑦) ≠ ∅)
11 id 22 . . . . . . . . 9 (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)))
1210, 11syl5com 31 . . . . . . . 8 ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → (𝑔𝑦) ∈ (𝑓𝑦)))
1312ralimdva 3165 . . . . . . 7 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦)) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1413adantld 492 . . . . . 6 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
1514eximdv 1921 . . . . 5 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓𝑦) ≠ ∅ → (𝑔𝑦) ∈ (𝑓𝑦))) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
165, 15mpi 20 . . . 4 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
174, 16mprgbir 3072 . . 3 𝑥AC ω
1817, 12th 264 . 2 (𝑥AC ω ↔ 𝑥 ∈ V)
1918eqriv 2734 1 AC ω = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2944  wral 3065  Vcvv 3446  cdif 3908  c0 4283  𝒫 cpw 4561  {csn 4587   Fn wfn 6492  wf 6493  cfv 6497  (class class class)co 7358  ωcom 7803  m cmap 8766  AC wacn 9875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9578  ax-cc 10372
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-er 8649  df-map 8768  df-en 8885  df-acn 9879
This theorem is referenced by:  iunctb  10511
  Copyright terms: Public domain W3C validator