| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acncc | Structured version Visualization version GIF version | ||
| Description: An ax-cc 10449 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acncc | ⊢ AC ω = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | omex 9657 | . . . . 5 ⊢ ω ∈ V | |
| 3 | isacn 10058 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . 4 ⊢ (𝑥 ∈ AC ω ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 5 | axcc2 10451 | . . . . 5 ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 6 | elmapi 8863 | . . . . . . . . . 10 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → 𝑓:ω⟶(𝒫 𝑥 ∖ {∅})) | |
| 7 | ffvelcdm 7071 | . . . . . . . . . . 11 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
| 8 | eldifsni 4766 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
| 9 | 7, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑓:ω⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
| 10 | 6, 9 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (𝑓‘𝑦) ≠ ∅) |
| 11 | id 22 | . . . . . . . . 9 ⊢ (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 12 | 10, 11 | syl5com 31 | . . . . . . . 8 ⊢ ((𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) ∧ 𝑦 ∈ ω) → (((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 13 | 12 | ralimdva 3152 | . . . . . . 7 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 14 | 13 | adantld 490 | . . . . . 6 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ((𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 15 | 14 | eximdv 1917 | . . . . 5 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω ((𝑓‘𝑦) ≠ ∅ → (𝑔‘𝑦) ∈ (𝑓‘𝑦))) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 16 | 5, 15 | mpi 20 | . . . 4 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m ω) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 17 | 4, 16 | mprgbir 3058 | . . 3 ⊢ 𝑥 ∈ AC ω |
| 18 | 17, 1 | 2th 264 | . 2 ⊢ (𝑥 ∈ AC ω ↔ 𝑥 ∈ V) |
| 19 | 18 | eqriv 2732 | 1 ⊢ AC ω = V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 {csn 4601 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ↑m cmap 8840 AC wacn 9952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-er 8719 df-map 8842 df-en 8960 df-acn 9956 |
| This theorem is referenced by: iunctb 10588 |
| Copyright terms: Public domain | W3C validator |