Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopass Structured version   Visualization version   GIF version

Theorem assintopass 47169
Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopass ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem assintopass
StepHypRef Expression
1 id 22 . 2 ( ∈ ( assIntOp ‘𝑀) → ∈ ( assIntOp ‘𝑀))
2 elfvex 6923 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
3 assintopasslaw 47168 . . 3 ( ∈ ( assIntOp ‘𝑀) → assLaw 𝑀)
4 isasslaw 47147 . . 3 (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
53, 4syl5ibcom 244 . 2 ( ∈ ( assIntOp ‘𝑀) → (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
61, 2, 5mp2and 696 1 ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468   class class class wbr 5141  cfv 6537  (class class class)co 7405   assLaw casslaw 47139   assIntOp cassintop 47153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824  df-asslaw 47143  df-intop 47154  df-clintop 47155  df-assintop 47156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator