Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopass Structured version   Visualization version   GIF version

Theorem assintopass 44141
Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopass ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem assintopass
StepHypRef Expression
1 id 22 . 2 ( ∈ ( assIntOp ‘𝑀) → ∈ ( assIntOp ‘𝑀))
2 elfvex 6703 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
3 assintopasslaw 44140 . . 3 ( ∈ ( assIntOp ‘𝑀) → assLaw 𝑀)
4 isasslaw 44119 . . 3 (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
53, 4syl5ibcom 247 . 2 ( ∈ ( assIntOp ‘𝑀) → (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
61, 2, 5mp2and 697 1 ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494   class class class wbr 5066  cfv 6355  (class class class)co 7156   assLaw casslaw 44111   assIntOp cassintop 44125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-asslaw 44115  df-intop 44126  df-clintop 44127  df-assintop 44128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator