Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assintopass Structured version   Visualization version   GIF version

Theorem assintopass 43553
Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
assintopass ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem assintopass
StepHypRef Expression
1 id 22 . 2 ( ∈ ( assIntOp ‘𝑀) → ∈ ( assIntOp ‘𝑀))
2 elfvex 6563 . 2 ( ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V)
3 assintopasslaw 43552 . . 3 ( ∈ ( assIntOp ‘𝑀) → assLaw 𝑀)
4 isasslaw 43531 . . 3 (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
53, 4syl5ibcom 246 . 2 ( ∈ ( assIntOp ‘𝑀) → (( ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
61, 2, 5mp2and 695 1 ( ∈ ( assIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  wral 3103  Vcvv 3432   class class class wbr 4956  cfv 6217  (class class class)co 7007   assLaw casslaw 43523   assIntOp cassintop 43537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-1st 7536  df-2nd 7537  df-map 8249  df-asslaw 43527  df-intop 43538  df-clintop 43539  df-assintop 43540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator