Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopass | Structured version Visualization version GIF version |
Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopass | ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ ∈ ( assIntOp ‘𝑀)) | |
2 | elfvex 6807 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → 𝑀 ∈ V) | |
3 | assintopasslaw 45407 | . . 3 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ assLaw 𝑀) | |
4 | isasslaw 45386 | . . 3 ⊢ (( ⚬ ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | |
5 | 3, 4 | syl5ibcom 244 | . 2 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → (( ⚬ ∈ ( assIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
6 | 1, 2, 5 | mp2and 696 | 1 ⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 assLaw casslaw 45378 assIntOp cassintop 45392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-asslaw 45382 df-intop 45393 df-clintop 45394 df-assintop 45395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |