Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isassintop Structured version   Visualization version   GIF version

Theorem isassintop 45292
Description: The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isassintop (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem isassintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 assintopmap 45288 . . . . 5 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
21eleq2d 2824 . . . 4 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
3 breq1 5073 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
43elrab 3617 . . . 4 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀))
52, 4bitrdi 286 . . 3 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)))
6 elmapi 8595 . . . . . 6 ( ∈ (𝑀m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76ad2antrl 724 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
8 isasslaw 45274 . . . . . . . 8 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
98biimpd 228 . . . . . . 7 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109impancom 451 . . . . . 6 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → (𝑀𝑉 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1110impcom 407 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
127, 11jca 511 . . . 4 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1312ex 412 . . 3 (𝑀𝑉 → (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
145, 13sylbid 239 . 2 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
15 isclintop 45289 . . . . . . 7 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
1615biimprcd 249 . . . . . 6 ( :(𝑀 × 𝑀)⟶𝑀 → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1716adantr 480 . . . . 5 (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1817impcom 407 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( clIntOp ‘𝑀))
19 sqxpexg 7583 . . . . . . . . 9 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
20 fex 7084 . . . . . . . . 9 (( :(𝑀 × 𝑀)⟶𝑀 ∧ (𝑀 × 𝑀) ∈ V) → ∈ V)
2119, 20sylan2 592 . . . . . . . 8 (( :(𝑀 × 𝑀)⟶𝑀𝑀𝑉) → ∈ V)
2221ancoms 458 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → ∈ V)
23 simpl 482 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → 𝑀𝑉)
24 isasslaw 45274 . . . . . . . 8 (( ∈ V ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2524bicomd 222 . . . . . . 7 (( ∈ V ∧ 𝑀𝑉) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2622, 23, 25syl2anc 583 . . . . . 6 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2726biimpd 228 . . . . 5 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → assLaw 𝑀))
2827impr 454 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → assLaw 𝑀)
29 assintopval 45287 . . . . . . 7 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3029adantr 480 . . . . . 6 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3130eleq2d 2824 . . . . 5 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
323elrab 3617 . . . . 5 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
3331, 32bitrdi 286 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
3418, 28, 33mpbir2and 709 . . 3 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( assIntOp ‘𝑀))
3534ex 412 . 2 (𝑀𝑉 → (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → ∈ ( assIntOp ‘𝑀)))
3614, 35impbid 211 1 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   assLaw casslaw 45266   clIntOp cclintop 45279   assIntOp cassintop 45280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-asslaw 45270  df-intop 45281  df-clintop 45282  df-assintop 45283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator