Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isassintop Structured version   Visualization version   GIF version

Theorem isassintop 46134
Description: The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isassintop (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem isassintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 assintopmap 46130 . . . . 5 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
21eleq2d 2823 . . . 4 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
3 breq1 5108 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
43elrab 3645 . . . 4 ( ∈ {𝑜 ∈ (𝑀m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀))
52, 4bitrdi 286 . . 3 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)))
6 elmapi 8787 . . . . . 6 ( ∈ (𝑀m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76ad2antrl 726 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
8 isasslaw 46116 . . . . . . . 8 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
98biimpd 228 . . . . . . 7 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109impancom 452 . . . . . 6 (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → (𝑀𝑉 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1110impcom 408 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
127, 11jca 512 . . . 4 ((𝑀𝑉 ∧ ( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1312ex 413 . . 3 (𝑀𝑉 → (( ∈ (𝑀m (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
145, 13sylbid 239 . 2 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
15 isclintop 46131 . . . . . . 7 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
1615biimprcd 249 . . . . . 6 ( :(𝑀 × 𝑀)⟶𝑀 → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1716adantr 481 . . . . 5 (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1817impcom 408 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( clIntOp ‘𝑀))
19 sqxpexg 7689 . . . . . . . . 9 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
20 fex 7176 . . . . . . . . 9 (( :(𝑀 × 𝑀)⟶𝑀 ∧ (𝑀 × 𝑀) ∈ V) → ∈ V)
2119, 20sylan2 593 . . . . . . . 8 (( :(𝑀 × 𝑀)⟶𝑀𝑀𝑉) → ∈ V)
2221ancoms 459 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → ∈ V)
23 simpl 483 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → 𝑀𝑉)
24 isasslaw 46116 . . . . . . . 8 (( ∈ V ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2524bicomd 222 . . . . . . 7 (( ∈ V ∧ 𝑀𝑉) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2622, 23, 25syl2anc 584 . . . . . 6 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2726biimpd 228 . . . . 5 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → assLaw 𝑀))
2827impr 455 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → assLaw 𝑀)
29 assintopval 46129 . . . . . . 7 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3029adantr 481 . . . . . 6 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3130eleq2d 2823 . . . . 5 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
323elrab 3645 . . . . 5 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
3331, 32bitrdi 286 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
3418, 28, 33mpbir2and 711 . . 3 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( assIntOp ‘𝑀))
3534ex 413 . 2 (𝑀𝑉 → (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → ∈ ( assIntOp ‘𝑀)))
3614, 35impbid 211 1 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445   class class class wbr 5105   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765   assLaw casslaw 46108   clIntOp cclintop 46121   assIntOp cassintop 46122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-asslaw 46112  df-intop 46123  df-clintop 46124  df-assintop 46125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator