| Step | Hyp | Ref
| Expression |
| 1 | | assintopmap 48127 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) |
| 2 | 1 | eleq2d 2826 |
. . . 4
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp
‘𝑀) ↔ ⚬ ∈
{𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})) |
| 3 | | breq1 5145 |
. . . . 5
⊢ (𝑜 = ⚬ → (𝑜 assLaw 𝑀 ↔ ⚬ assLaw 𝑀)) |
| 4 | 3 | elrab 3691 |
. . . 4
⊢ ( ⚬ ∈
{𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) |
| 5 | 2, 4 | bitrdi 287 |
. . 3
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp
‘𝑀) ↔ ( ⚬ ∈
(𝑀 ↑m
(𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀))) |
| 6 | | elmapi 8890 |
. . . . . 6
⊢ ( ⚬ ∈
(𝑀 ↑m
(𝑀 × 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑀) |
| 7 | 6 | ad2antrl 728 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑀) |
| 8 | | isasslaw 48113 |
. . . . . . . 8
⊢ (( ⚬ ∈
(𝑀 ↑m
(𝑀 × 𝑀)) ∧ 𝑀 ∈ 𝑉) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 9 | 8 | biimpd 229 |
. . . . . . 7
⊢ (( ⚬ ∈
(𝑀 ↑m
(𝑀 × 𝑀)) ∧ 𝑀 ∈ 𝑉) → ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 10 | 9 | impancom 451 |
. . . . . 6
⊢ (( ⚬ ∈
(𝑀 ↑m
(𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀) → (𝑀 ∈ 𝑉 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 11 | 10 | impcom 407 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
| 12 | 7, 11 | jca 511 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀)) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 13 | 12 | ex 412 |
. . 3
⊢ (𝑀 ∈ 𝑉 → (( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∧ ⚬ assLaw 𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) |
| 14 | 5, 13 | sylbid 240 |
. 2
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp
‘𝑀) → ( ⚬
:(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) |
| 15 | | isclintop 48128 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp
‘𝑀) ↔ ⚬
:(𝑀 × 𝑀)⟶𝑀)) |
| 16 | 15 | biimprcd 250 |
. . . . . 6
⊢ ( ⚬
:(𝑀 × 𝑀)⟶𝑀 → (𝑀 ∈ 𝑉 → ⚬ ∈ ( clIntOp
‘𝑀))) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ (( ⚬
:(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) → (𝑀 ∈ 𝑉 → ⚬ ∈ ( clIntOp
‘𝑀))) |
| 18 | 17 | impcom 407 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ⚬ ∈ ( clIntOp
‘𝑀)) |
| 19 | | sqxpexg 7776 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) |
| 20 | | fex 7247 |
. . . . . . . . 9
⊢ (( ⚬
:(𝑀 × 𝑀)⟶𝑀 ∧ (𝑀 × 𝑀) ∈ V) → ⚬ ∈
V) |
| 21 | 19, 20 | sylan2 593 |
. . . . . . . 8
⊢ (( ⚬
:(𝑀 × 𝑀)⟶𝑀 ∧ 𝑀 ∈ 𝑉) → ⚬ ∈
V) |
| 22 | 21 | ancoms 458 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ⚬ :(𝑀 × 𝑀)⟶𝑀) → ⚬ ∈
V) |
| 23 | | simpl 482 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ⚬ :(𝑀 × 𝑀)⟶𝑀) → 𝑀 ∈ 𝑉) |
| 24 | | isasslaw 48113 |
. . . . . . . 8
⊢ (( ⚬ ∈
V ∧ 𝑀 ∈ 𝑉) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
| 25 | 24 | bicomd 223 |
. . . . . . 7
⊢ (( ⚬ ∈
V ∧ 𝑀 ∈ 𝑉) → (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ⚬ assLaw 𝑀)) |
| 26 | 22, 23, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ⚬ :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ⚬ assLaw 𝑀)) |
| 27 | 26 | biimpd 229 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ⚬ :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) → ⚬ assLaw 𝑀)) |
| 28 | 27 | impr 454 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ⚬ assLaw 𝑀) |
| 29 | | assintopval 48126 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
| 31 | 30 | eleq2d 2826 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ( ⚬ ∈ ( assIntOp
‘𝑀) ↔ ⚬ ∈
{𝑜 ∈ ( clIntOp
‘𝑀) ∣ 𝑜 assLaw 𝑀})) |
| 32 | 3 | elrab 3691 |
. . . . 5
⊢ ( ⚬ ∈
{𝑜 ∈ ( clIntOp
‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ⚬ ∈ ( clIntOp
‘𝑀) ∧ ⚬ assLaw
𝑀)) |
| 33 | 31, 32 | bitrdi 287 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ( ⚬ ∈ ( assIntOp
‘𝑀) ↔ ( ⚬ ∈
( clIntOp ‘𝑀) ∧
⚬
assLaw 𝑀))) |
| 34 | 18, 28, 33 | mpbir2and 713 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) → ⚬ ∈ ( assIntOp
‘𝑀)) |
| 35 | 34 | ex 412 |
. 2
⊢ (𝑀 ∈ 𝑉 → (( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) → ⚬ ∈ ( assIntOp
‘𝑀))) |
| 36 | 14, 35 | impbid 212 |
1
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp
‘𝑀) ↔ ( ⚬
:(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) |