Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenp1odd Structured version   Visualization version   GIF version

Theorem evenp1odd 44088
Description: The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.)
Assertion
Ref Expression
evenp1odd (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd )

Proof of Theorem evenp1odd
StepHypRef Expression
1 evenz 44078 . . 3 (𝑍 ∈ Even → 𝑍 ∈ ℤ)
21peano2zd 12087 . 2 (𝑍 ∈ Even → (𝑍 + 1) ∈ ℤ)
3 iseven 44076 . . 3 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
4 zcn 11983 . . . . . . . 8 (𝑍 ∈ ℤ → 𝑍 ∈ ℂ)
5 pncan1 11062 . . . . . . . 8 (𝑍 ∈ ℂ → ((𝑍 + 1) − 1) = 𝑍)
64, 5syl 17 . . . . . . 7 (𝑍 ∈ ℤ → ((𝑍 + 1) − 1) = 𝑍)
76eqcomd 2830 . . . . . 6 (𝑍 ∈ ℤ → 𝑍 = ((𝑍 + 1) − 1))
87oveq1d 7164 . . . . 5 (𝑍 ∈ ℤ → (𝑍 / 2) = (((𝑍 + 1) − 1) / 2))
98eleq1d 2900 . . . 4 (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ ↔ (((𝑍 + 1) − 1) / 2) ∈ ℤ))
109biimpa 480 . . 3 ((𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ) → (((𝑍 + 1) − 1) / 2) ∈ ℤ)
113, 10sylbi 220 . 2 (𝑍 ∈ Even → (((𝑍 + 1) − 1) / 2) ∈ ℤ)
12 isodd2 44083 . 2 ((𝑍 + 1) ∈ Odd ↔ ((𝑍 + 1) ∈ ℤ ∧ (((𝑍 + 1) − 1) / 2) ∈ ℤ))
132, 11, 12sylanbrc 586 1 (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  (class class class)co 7149  cc 10533  1c1 10536   + caddc 10538  cmin 10868   / cdiv 11295  2c2 11689  cz 11978   Even ceven 44072   Odd codd 44073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-even 44074  df-odd 44075
This theorem is referenced by:  epee  44153  3odd  44156  5odd  44158  7odd  44160  evenltle  44165  9gbo  44222
  Copyright terms: Public domain W3C validator