![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenp1odd | Structured version Visualization version GIF version |
Description: The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
Ref | Expression |
---|---|
evenp1odd | ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz 46598 | . . 3 ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | |
2 | 1 | peano2zd 12674 | . 2 ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ ℤ) |
3 | iseven 46596 | . . 3 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
4 | zcn 12568 | . . . . . . . 8 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ ℂ) | |
5 | pncan1 11643 | . . . . . . . 8 ⊢ (𝑍 ∈ ℂ → ((𝑍 + 1) − 1) = 𝑍) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑍 ∈ ℤ → ((𝑍 + 1) − 1) = 𝑍) |
7 | 6 | eqcomd 2737 | . . . . . 6 ⊢ (𝑍 ∈ ℤ → 𝑍 = ((𝑍 + 1) − 1)) |
8 | 7 | oveq1d 7427 | . . . . 5 ⊢ (𝑍 ∈ ℤ → (𝑍 / 2) = (((𝑍 + 1) − 1) / 2)) |
9 | 8 | eleq1d 2817 | . . . 4 ⊢ (𝑍 ∈ ℤ → ((𝑍 / 2) ∈ ℤ ↔ (((𝑍 + 1) − 1) / 2) ∈ ℤ)) |
10 | 9 | biimpa 476 | . . 3 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ) → (((𝑍 + 1) − 1) / 2) ∈ ℤ) |
11 | 3, 10 | sylbi 216 | . 2 ⊢ (𝑍 ∈ Even → (((𝑍 + 1) − 1) / 2) ∈ ℤ) |
12 | isodd2 46603 | . 2 ⊢ ((𝑍 + 1) ∈ Odd ↔ ((𝑍 + 1) ∈ ℤ ∧ (((𝑍 + 1) − 1) / 2) ∈ ℤ)) | |
13 | 2, 11, 12 | sylanbrc 582 | 1 ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℂcc 11111 1c1 11114 + caddc 11116 − cmin 11449 / cdiv 11876 2c2 12272 ℤcz 12563 Even ceven 46592 Odd codd 46593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-even 46594 df-odd 46595 |
This theorem is referenced by: epee 46673 3odd 46676 5odd 46678 7odd 46680 evenltle 46685 9gbo 46742 |
Copyright terms: Public domain | W3C validator |