Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enege Structured version   Visualization version   GIF version

Theorem enege 43817
Description: The negative of an even number is even. (Contributed by AV, 20-Jun-2020.)
Assertion
Ref Expression
enege (𝐴 ∈ Even → -𝐴 ∈ Even )

Proof of Theorem enege
StepHypRef Expression
1 znegcl 12020 . . . 4 (𝐴 ∈ ℤ → -𝐴 ∈ ℤ)
21adantr 483 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → -𝐴 ∈ ℤ)
3 znegcl 12020 . . . . 5 ((𝐴 / 2) ∈ ℤ → -(𝐴 / 2) ∈ ℤ)
43adantl 484 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → -(𝐴 / 2) ∈ ℤ)
5 zcn 11989 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
6 2cnd 11718 . . . . . . 7 (𝐴 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 11744 . . . . . . . 8 2 ≠ 0
87a1i 11 . . . . . . 7 (𝐴 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1124 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 483 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divneg 11334 . . . . . 6 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝐴 / 2) = (-𝐴 / 2))
1211eleq1d 2899 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-(𝐴 / 2) ∈ ℤ ↔ (-𝐴 / 2) ∈ ℤ))
1310, 12syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (-(𝐴 / 2) ∈ ℤ ↔ (-𝐴 / 2) ∈ ℤ))
144, 13mpbid 234 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (-𝐴 / 2) ∈ ℤ)
152, 14jca 514 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (-𝐴 ∈ ℤ ∧ (-𝐴 / 2) ∈ ℤ))
16 iseven 43800 . 2 (𝐴 ∈ Even ↔ (𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ))
17 iseven 43800 . 2 (-𝐴 ∈ Even ↔ (-𝐴 ∈ ℤ ∧ (-𝐴 / 2) ∈ ℤ))
1815, 16, 173imtr4i 294 1 (𝐴 ∈ Even → -𝐴 ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3018  (class class class)co 7158  cc 10537  0cc0 10539  -cneg 10873   / cdiv 11299  2c2 11695  cz 11984   Even ceven 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-z 11985  df-even 43798
This theorem is referenced by:  omeoALTV  43858  emee  43878
  Copyright terms: Public domain W3C validator