Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-groth Structured version   Visualization version   GIF version

Theorem rr-groth 43736
Description: An equivalent of ax-groth 10846 using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
rr-groth 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧,𝑤,𝑣,𝑓,𝑖   𝑦,𝑢,𝑧,𝑤,𝑓,𝑖

Proof of Theorem rr-groth
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑝 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruex 43735 . 2 𝑦 ∈ Univ 𝑥𝑦
2 df-rex 3068 . . 3 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦))
3 exancom 1857 . . 3 (∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ Univ))
4 grumnueq 43724 . . . . . . 7 Univ = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
54ismnu 43698 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
65elv 3477 . . . . 5 (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
76anbi2i 622 . . . 4 ((𝑥𝑦𝑦 ∈ Univ) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
87exbii 1843 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ Univ) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
92, 3, 83bitri 297 . 2 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
101, 9mpbi 229 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  wcel 2099  wral 3058  wrex 3067  Vcvv 3471  wss 3947  𝒫 cpw 4603   cuni 4908  Univcgru 10813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-reg 9615  ax-inf2 9664  ax-ac2 10486  ax-groth 10846
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-smo 8366  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-oi 9533  df-har 9580  df-tc 9760  df-r1 9787  df-rank 9788  df-card 9962  df-aleph 9963  df-cf 9964  df-acn 9965  df-ac 10139  df-wina 10707  df-ina 10708  df-tsk 10772  df-gru 10814  df-scott 43673  df-coll 43688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator