Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-groth Structured version   Visualization version   GIF version

Theorem rr-groth 40497
Description: An equivalent of ax-groth 10237 using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
rr-groth 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧,𝑤,𝑣,𝑓,𝑖   𝑦,𝑢,𝑧,𝑤,𝑓,𝑖

Proof of Theorem rr-groth
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑝 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruex 40496 . 2 𝑦 ∈ Univ 𝑥𝑦
2 df-rex 3148 . . 3 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦))
3 exancom 1854 . . 3 (∃𝑦(𝑦 ∈ Univ ∧ 𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ Univ))
4 grumnueq 40485 . . . . . . 7 Univ = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
54ismnu 40459 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
65elv 3504 . . . . 5 (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
76anbi2i 622 . . . 4 ((𝑥𝑦𝑦 ∈ Univ) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
87exbii 1841 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ Univ) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
92, 3, 83bitri 298 . 2 (∃𝑦 ∈ Univ 𝑥𝑦 ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
101, 9mpbi 231 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1528  wex 1773  wcel 2106  wral 3142  wrex 3143  Vcvv 3499  wss 3939  𝒫 cpw 4541   cuni 4836  Univcgru 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-reg 9048  ax-inf2 9096  ax-ac2 9877  ax-groth 10237
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-smo 7977  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-oi 8966  df-har 9014  df-tc 9171  df-r1 9185  df-rank 9186  df-card 9360  df-aleph 9361  df-cf 9362  df-acn 9363  df-ac 9534  df-wina 10098  df-ina 10099  df-tsk 10163  df-gru 10205  df-scott 40434  df-coll 40449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator