| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16839 tsmsxp 24093 nolt02o 27659 nogt01o 27660 cofsslt 27878 brbtwn2 28884 ax5seg 28917 3vfriswmgr 30259 br8 35773 btwndiff 36045 ifscgr 36062 seglecgr12im 36128 lkrshp 39123 cvlcvr1 39357 atbtwn 39465 3dimlem3 39480 3dimlem3OLDN 39481 1cvratex 39492 llnmlplnN 39558 4atlem3 39615 4atlem3a 39616 4atlem11 39628 4atlem12 39631 lnatexN 39798 cdlemb 39813 paddasslem4 39842 paddasslem10 39848 pmodlem1 39865 llnexchb2lem 39887 llnexchb2 39888 arglem1N 40209 cdlemd4 40220 cdlemd9 40225 cdlemd 40226 cdleme16 40304 cdleme20 40343 cdleme21i 40354 cdleme21k 40357 cdleme27N 40388 cdleme28c 40391 cdlemefrs29bpre0 40415 cdlemefrs29clN 40418 cdlemefrs32fva 40419 cdleme41sn3a 40452 cdleme32fva 40456 cdleme40n 40487 cdlemg12e 40666 cdlemg15a 40674 cdlemg15 40675 cdlemg16ALTN 40677 cdlemg16z 40678 cdlemg20 40704 cdlemg22 40706 cdlemg29 40724 cdlemg38 40734 cdlemk33N 40928 cdlemk56 40990 dihord11b 41241 dihord2pre 41244 dihord4 41277 ismnu 44285 fourierdlem77 46212 |
| Copyright terms: Public domain | W3C validator |