![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: pythagtriplem4 16866 tsmsxp 24184 nolt02o 27758 nogt01o 27759 cofsslt 27970 brbtwn2 28938 ax5seg 28971 3vfriswmgr 30310 br8 35718 btwndiff 35991 ifscgr 36008 seglecgr12im 36074 lkrshp 39061 cvlcvr1 39295 atbtwn 39403 3dimlem3 39418 3dimlem3OLDN 39419 1cvratex 39430 llnmlplnN 39496 4atlem3 39553 4atlem3a 39554 4atlem11 39566 4atlem12 39569 lnatexN 39736 cdlemb 39751 paddasslem4 39780 paddasslem10 39786 pmodlem1 39803 llnexchb2lem 39825 llnexchb2 39826 arglem1N 40147 cdlemd4 40158 cdlemd9 40163 cdlemd 40164 cdleme16 40242 cdleme20 40281 cdleme21i 40292 cdleme21k 40295 cdleme27N 40326 cdleme28c 40329 cdlemefrs29bpre0 40353 cdlemefrs29clN 40356 cdlemefrs32fva 40357 cdleme41sn3a 40390 cdleme32fva 40394 cdleme40n 40425 cdlemg12e 40604 cdlemg15a 40612 cdlemg15 40613 cdlemg16ALTN 40615 cdlemg16z 40616 cdlemg20 40642 cdlemg22 40644 cdlemg29 40662 cdlemg38 40672 cdlemk33N 40866 cdlemk56 40928 dihord11b 41179 dihord2pre 41182 dihord4 41215 ismnu 44230 fourierdlem77 46104 |
Copyright terms: Public domain | W3C validator |