| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16733 tsmsxp 24071 nolt02o 27635 nogt01o 27636 cofsslt 27863 brbtwn2 28885 ax5seg 28918 3vfriswmgr 30260 br8 35821 btwndiff 36092 ifscgr 36109 seglecgr12im 36175 lkrshp 39225 cvlcvr1 39459 atbtwn 39566 3dimlem3 39581 3dimlem3OLDN 39582 1cvratex 39593 llnmlplnN 39659 4atlem3 39716 4atlem3a 39717 4atlem11 39729 4atlem12 39732 lnatexN 39899 cdlemb 39914 paddasslem4 39943 paddasslem10 39949 pmodlem1 39966 llnexchb2lem 39988 llnexchb2 39989 arglem1N 40310 cdlemd4 40321 cdlemd9 40326 cdlemd 40327 cdleme16 40405 cdleme20 40444 cdleme21i 40455 cdleme21k 40458 cdleme27N 40489 cdleme28c 40492 cdlemefrs29bpre0 40516 cdlemefrs29clN 40519 cdlemefrs32fva 40520 cdleme41sn3a 40553 cdleme32fva 40557 cdleme40n 40588 cdlemg12e 40767 cdlemg15a 40775 cdlemg15 40776 cdlemg16ALTN 40778 cdlemg16z 40779 cdlemg20 40805 cdlemg22 40807 cdlemg29 40825 cdlemg38 40835 cdlemk33N 41029 cdlemk56 41091 dihord11b 41342 dihord2pre 41345 dihord4 41378 ismnu 44379 fourierdlem77 46306 |
| Copyright terms: Public domain | W3C validator |