![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1184 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl1 1178 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: pythagtriplem4 15985 tsmsxp 22446 brbtwn2 26374 ax5seg 26407 3vfriswmgr 27749 br8 32600 nolt02o 32808 btwndiff 33097 ifscgr 33114 seglecgr12im 33180 lkrshp 35772 cvlcvr1 36006 atbtwn 36113 3dimlem3 36128 3dimlem3OLDN 36129 1cvratex 36140 llnmlplnN 36206 4atlem3 36263 4atlem3a 36264 4atlem11 36276 4atlem12 36279 lnatexN 36446 cdlemb 36461 paddasslem4 36490 paddasslem10 36496 pmodlem1 36513 llnexchb2lem 36535 llnexchb2 36536 arglem1N 36857 cdlemd4 36868 cdlemd9 36873 cdlemd 36874 cdleme16 36952 cdleme20 36991 cdleme21i 37002 cdleme21k 37005 cdleme27N 37036 cdleme28c 37039 cdlemefrs29bpre0 37063 cdlemefrs29clN 37066 cdlemefrs32fva 37067 cdleme41sn3a 37100 cdleme32fva 37104 cdleme40n 37135 cdlemg12e 37314 cdlemg15a 37322 cdlemg15 37323 cdlemg16ALTN 37325 cdlemg16z 37326 cdlemg20 37352 cdlemg22 37354 cdlemg29 37372 cdlemg38 37382 cdlemk33N 37576 cdlemk56 37638 dihord11b 37889 dihord2pre 37892 dihord4 37925 ismnu 40094 fourierdlem77 42010 |
Copyright terms: Public domain | W3C validator |