![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: pythagtriplem4 16752 tsmsxp 23659 nolt02o 27198 nogt01o 27199 cofsslt 27405 brbtwn2 28163 ax5seg 28196 3vfriswmgr 29531 br8 34726 btwndiff 34999 ifscgr 35016 seglecgr12im 35082 lkrshp 37975 cvlcvr1 38209 atbtwn 38317 3dimlem3 38332 3dimlem3OLDN 38333 1cvratex 38344 llnmlplnN 38410 4atlem3 38467 4atlem3a 38468 4atlem11 38480 4atlem12 38483 lnatexN 38650 cdlemb 38665 paddasslem4 38694 paddasslem10 38700 pmodlem1 38717 llnexchb2lem 38739 llnexchb2 38740 arglem1N 39061 cdlemd4 39072 cdlemd9 39077 cdlemd 39078 cdleme16 39156 cdleme20 39195 cdleme21i 39206 cdleme21k 39209 cdleme27N 39240 cdleme28c 39243 cdlemefrs29bpre0 39267 cdlemefrs29clN 39270 cdlemefrs32fva 39271 cdleme41sn3a 39304 cdleme32fva 39308 cdleme40n 39339 cdlemg12e 39518 cdlemg15a 39526 cdlemg15 39527 cdlemg16ALTN 39529 cdlemg16z 39530 cdlemg20 39556 cdlemg22 39558 cdlemg29 39576 cdlemg38 39586 cdlemk33N 39780 cdlemk56 39842 dihord11b 40093 dihord2pre 40096 dihord4 40129 ismnu 43020 fourierdlem77 44899 |
Copyright terms: Public domain | W3C validator |