Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pythagtriplem4 16518 tsmsxp 23304 brbtwn2 27271 ax5seg 27304 3vfriswmgr 28638 br8 33719 poxp3 33792 nolt02o 33894 nogt01o 33895 cofsslt 34084 btwndiff 34325 ifscgr 34342 seglecgr12im 34408 lkrshp 37115 cvlcvr1 37349 atbtwn 37456 3dimlem3 37471 3dimlem3OLDN 37472 1cvratex 37483 llnmlplnN 37549 4atlem3 37606 4atlem3a 37607 4atlem11 37619 4atlem12 37622 lnatexN 37789 cdlemb 37804 paddasslem4 37833 paddasslem10 37839 pmodlem1 37856 llnexchb2lem 37878 llnexchb2 37879 arglem1N 38200 cdlemd4 38211 cdlemd9 38216 cdlemd 38217 cdleme16 38295 cdleme20 38334 cdleme21i 38345 cdleme21k 38348 cdleme27N 38379 cdleme28c 38382 cdlemefrs29bpre0 38406 cdlemefrs29clN 38409 cdlemefrs32fva 38410 cdleme41sn3a 38443 cdleme32fva 38447 cdleme40n 38478 cdlemg12e 38657 cdlemg15a 38665 cdlemg15 38666 cdlemg16ALTN 38668 cdlemg16z 38669 cdlemg20 38695 cdlemg22 38697 cdlemg29 38715 cdlemg38 38725 cdlemk33N 38919 cdlemk56 38981 dihord11b 39232 dihord2pre 39235 dihord4 39268 ismnu 41849 fourierdlem77 43695 |
Copyright terms: Public domain | W3C validator |