| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16840 tsmsxp 24110 nolt02o 27677 nogt01o 27678 cofsslt 27889 brbtwn2 28851 ax5seg 28884 3vfriswmgr 30226 br8 35731 btwndiff 36003 ifscgr 36020 seglecgr12im 36086 lkrshp 39081 cvlcvr1 39315 atbtwn 39423 3dimlem3 39438 3dimlem3OLDN 39439 1cvratex 39450 llnmlplnN 39516 4atlem3 39573 4atlem3a 39574 4atlem11 39586 4atlem12 39589 lnatexN 39756 cdlemb 39771 paddasslem4 39800 paddasslem10 39806 pmodlem1 39823 llnexchb2lem 39845 llnexchb2 39846 arglem1N 40167 cdlemd4 40178 cdlemd9 40183 cdlemd 40184 cdleme16 40262 cdleme20 40301 cdleme21i 40312 cdleme21k 40315 cdleme27N 40346 cdleme28c 40349 cdlemefrs29bpre0 40373 cdlemefrs29clN 40376 cdlemefrs32fva 40377 cdleme41sn3a 40410 cdleme32fva 40414 cdleme40n 40445 cdlemg12e 40624 cdlemg15a 40632 cdlemg15 40633 cdlemg16ALTN 40635 cdlemg16z 40636 cdlemg20 40662 cdlemg22 40664 cdlemg29 40682 cdlemg38 40692 cdlemk33N 40886 cdlemk56 40948 dihord11b 41199 dihord2pre 41202 dihord4 41235 ismnu 44252 fourierdlem77 46170 |
| Copyright terms: Public domain | W3C validator |