![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: pythagtriplem4 16756 tsmsxp 23879 nolt02o 27422 nogt01o 27423 cofsslt 27631 brbtwn2 28418 ax5seg 28451 3vfriswmgr 29786 br8 35018 btwndiff 35291 ifscgr 35308 seglecgr12im 35374 lkrshp 38278 cvlcvr1 38512 atbtwn 38620 3dimlem3 38635 3dimlem3OLDN 38636 1cvratex 38647 llnmlplnN 38713 4atlem3 38770 4atlem3a 38771 4atlem11 38783 4atlem12 38786 lnatexN 38953 cdlemb 38968 paddasslem4 38997 paddasslem10 39003 pmodlem1 39020 llnexchb2lem 39042 llnexchb2 39043 arglem1N 39364 cdlemd4 39375 cdlemd9 39380 cdlemd 39381 cdleme16 39459 cdleme20 39498 cdleme21i 39509 cdleme21k 39512 cdleme27N 39543 cdleme28c 39546 cdlemefrs29bpre0 39570 cdlemefrs29clN 39573 cdlemefrs32fva 39574 cdleme41sn3a 39607 cdleme32fva 39611 cdleme40n 39642 cdlemg12e 39821 cdlemg15a 39829 cdlemg15 39830 cdlemg16ALTN 39832 cdlemg16z 39833 cdlemg20 39859 cdlemg22 39861 cdlemg29 39879 cdlemg38 39889 cdlemk33N 40083 cdlemk56 40145 dihord11b 40396 dihord2pre 40399 dihord4 40432 ismnu 43322 fourierdlem77 45198 |
Copyright terms: Public domain | W3C validator |