Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfuniv2 Structured version   Visualization version   GIF version

Theorem dfuniv2 43619
Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.)
Assertion
Ref Expression
dfuniv2 Univ = {𝑦 ∣ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))}
Distinct variable group:   𝑤,𝑓,𝑦,𝑧

Proof of Theorem dfuniv2
Dummy variables 𝑖 𝑘 𝑙 𝑚 𝑛 𝑝 𝑟 𝑢 𝑞 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnueq 43604 . . . . 5 Univ = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
21ismnu 43578 . . . 4 (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
32elv 3474 . . 3 (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
4 ismnushort 43618 . . . 4 (∀𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
54ralbii 3087 . . 3 (∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
63, 5bitr4i 278 . 2 (𝑦 ∈ Univ ↔ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
76eqabi 2863 1 Univ = {𝑦 ∣ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2703  wral 3055  wrex 3064  Vcvv 3468  cin 3942  wss 3943  𝒫 cpw 4597   cuni 4902  Univcgru 10784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-reg 9586  ax-inf2 9635  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-tc 9731  df-r1 9758  df-rank 9759  df-card 9933  df-cf 9935  df-acn 9936  df-ac 10110  df-wina 10678  df-ina 10679  df-gru 10785  df-scott 43553  df-coll 43568
This theorem is referenced by:  rr-grothshortbi  43620
  Copyright terms: Public domain W3C validator