Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfuniv2 | Structured version Visualization version GIF version |
Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
Ref | Expression |
---|---|
dfuniv2 | ⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grumnueq 41858 | . . . . 5 ⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | 1 | ismnu 41832 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
3 | 2 | elv 3436 | . . 3 ⊢ (𝑦 ∈ Univ ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
4 | ismnushort 41872 | . . . 4 ⊢ (∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | |
5 | 4 | ralbii 3092 | . . 3 ⊢ (∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
6 | 3, 5 | bitr4i 277 | . 2 ⊢ (𝑦 ∈ Univ ↔ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
7 | 6 | abbi2i 2880 | 1 ⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 Univcgru 10530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-reg 9312 ax-inf2 9360 ax-ac2 10203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-tc 9478 df-r1 9506 df-rank 9507 df-card 9681 df-cf 9683 df-acn 9684 df-ac 9856 df-wina 10424 df-ina 10425 df-gru 10531 df-scott 41807 df-coll 41822 |
This theorem is referenced by: rr-grothshortbi 41874 |
Copyright terms: Public domain | W3C validator |