Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfuniv2 Structured version   Visualization version   GIF version

Theorem dfuniv2 44299
Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.)
Assertion
Ref Expression
dfuniv2 Univ = {𝑦 ∣ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))}
Distinct variable group:   𝑤,𝑓,𝑦,𝑧

Proof of Theorem dfuniv2
Dummy variables 𝑖 𝑘 𝑙 𝑚 𝑛 𝑝 𝑟 𝑢 𝑞 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnueq 44284 . . . . 5 Univ = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
21ismnu 44258 . . . 4 (𝑦 ∈ V → (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
32elv 3484 . . 3 (𝑦 ∈ Univ ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
4 ismnushort 44298 . . . 4 (∀𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
54ralbii 3092 . . 3 (∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∀𝑓𝑤𝑦 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑦 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
63, 5bitr4i 278 . 2 (𝑦 ∈ Univ ↔ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤)))
76eqabi 2876 1 Univ = {𝑦 ∣ ∀𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 (𝒫 𝑧 ⊆ (𝑦𝑤) ∧ (𝑧 𝑓) ⊆ (𝑓 ∩ 𝒫 𝒫 𝑤))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  cin 3949  wss 3950  𝒫 cpw 4598   cuni 4905  Univcgru 10826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-reg 9628  ax-inf2 9677  ax-ac2 10499
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-tc 9773  df-r1 9800  df-rank 9801  df-card 9975  df-cf 9977  df-acn 9978  df-ac 10152  df-wina 10720  df-ina 10721  df-gru 10827  df-scott 44233  df-coll 44248
This theorem is referenced by:  rr-grothshortbi  44300
  Copyright terms: Public domain W3C validator