| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16797 mply1topmatcl 22699 nolt02o 27614 nogt01o 27615 cofsslt 27833 coinitsslt 27834 brbtwn2 28839 ax5seg 28872 br8 35750 btwndiff 36022 ifscgr 36039 seglecgr12im 36105 atlatle 39320 cvlcvr1 39339 atbtwn 39447 3dimlem3 39462 3dimlem3OLDN 39463 4atlem3 39597 4atlem11 39610 4atlem12 39613 2lplnj 39621 paddasslem4 39824 paddasslem10 39830 pmodlem1 39847 llnexchb2lem 39869 pclfinclN 39951 arglem1N 40191 cdlemd4 40202 cdlemd 40208 cdleme16 40286 cdleme20 40325 cdleme21k 40339 cdleme22cN 40343 cdleme27N 40370 cdleme28c 40373 cdleme29ex 40375 cdleme32fva 40438 cdleme40n 40469 cdlemg15a 40656 cdlemg15 40657 cdlemg16ALTN 40659 cdlemg16z 40660 cdlemg20 40686 cdlemg22 40688 cdlemg29 40706 cdlemg38 40716 cdlemk56 40972 dihord2pre 41226 ismnu 44257 uzwo4 45054 fourierdlem77 46188 |
| Copyright terms: Public domain | W3C validator |