![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl1 1185 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: pythagtriplem4 16866 mply1topmatcl 22832 nolt02o 27758 nogt01o 27759 cofsslt 27970 coinitsslt 27971 brbtwn2 28938 ax5seg 28971 br8 35718 btwndiff 35991 ifscgr 36008 seglecgr12im 36074 atlatle 39276 cvlcvr1 39295 atbtwn 39403 3dimlem3 39418 3dimlem3OLDN 39419 4atlem3 39553 4atlem11 39566 4atlem12 39569 2lplnj 39577 paddasslem4 39780 paddasslem10 39786 pmodlem1 39803 llnexchb2lem 39825 pclfinclN 39907 arglem1N 40147 cdlemd4 40158 cdlemd 40164 cdleme16 40242 cdleme20 40281 cdleme21k 40295 cdleme22cN 40299 cdleme27N 40326 cdleme28c 40329 cdleme29ex 40331 cdleme32fva 40394 cdleme40n 40425 cdlemg15a 40612 cdlemg15 40613 cdlemg16ALTN 40615 cdlemg16z 40616 cdlemg20 40642 cdlemg22 40644 cdlemg29 40662 cdlemg38 40672 cdlemk56 40928 dihord2pre 41182 ismnu 44230 uzwo4 44955 fourierdlem77 46104 |
Copyright terms: Public domain | W3C validator |