Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pythagtriplem4 16529 mply1topmatcl 21963 brbtwn2 27282 ax5seg 27315 br8 33732 poxp3 33805 nolt02o 33907 nogt01o 33908 cofsslt 34097 coinitsslt 34098 btwndiff 34338 ifscgr 34355 seglecgr12im 34421 atlatle 37341 cvlcvr1 37360 atbtwn 37467 3dimlem3 37482 3dimlem3OLDN 37483 4atlem3 37617 4atlem11 37630 4atlem12 37633 2lplnj 37641 paddasslem4 37844 paddasslem10 37850 pmodlem1 37867 llnexchb2lem 37889 pclfinclN 37971 arglem1N 38211 cdlemd4 38222 cdlemd 38228 cdleme16 38306 cdleme20 38345 cdleme21k 38359 cdleme22cN 38363 cdleme27N 38390 cdleme28c 38393 cdleme29ex 38395 cdleme32fva 38458 cdleme40n 38489 cdlemg15a 38676 cdlemg15 38677 cdlemg16ALTN 38679 cdlemg16z 38680 cdlemg20 38706 cdlemg22 38708 cdlemg29 38726 cdlemg38 38736 cdlemk56 38992 dihord2pre 39246 ismnu 41886 uzwo4 42608 fourierdlem77 43731 |
Copyright terms: Public domain | W3C validator |