| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16733 mply1topmatcl 22721 nolt02o 27635 nogt01o 27636 cofsslt 27863 coinitsslt 27864 brbtwn2 28885 ax5seg 28918 br8 35821 btwndiff 36092 ifscgr 36109 seglecgr12im 36175 atlatle 39440 cvlcvr1 39459 atbtwn 39566 3dimlem3 39581 3dimlem3OLDN 39582 4atlem3 39716 4atlem11 39729 4atlem12 39732 2lplnj 39740 paddasslem4 39943 paddasslem10 39949 pmodlem1 39966 llnexchb2lem 39988 pclfinclN 40070 arglem1N 40310 cdlemd4 40321 cdlemd 40327 cdleme16 40405 cdleme20 40444 cdleme21k 40458 cdleme22cN 40462 cdleme27N 40489 cdleme28c 40492 cdleme29ex 40494 cdleme32fva 40557 cdleme40n 40588 cdlemg15a 40775 cdlemg15 40776 cdlemg16ALTN 40778 cdlemg16z 40779 cdlemg20 40805 cdlemg22 40807 cdlemg29 40825 cdlemg38 40835 cdlemk56 41091 dihord2pre 41345 ismnu 44379 uzwo4 45175 fourierdlem77 46306 |
| Copyright terms: Public domain | W3C validator |