| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16731 mply1topmatcl 22721 nolt02o 27635 nogt01o 27636 cofsslt 27863 coinitsslt 27864 brbtwn2 28884 ax5seg 28917 br8 35798 btwndiff 36067 ifscgr 36084 seglecgr12im 36150 atlatle 39365 cvlcvr1 39384 atbtwn 39491 3dimlem3 39506 3dimlem3OLDN 39507 4atlem3 39641 4atlem11 39654 4atlem12 39657 2lplnj 39665 paddasslem4 39868 paddasslem10 39874 pmodlem1 39891 llnexchb2lem 39913 pclfinclN 39995 arglem1N 40235 cdlemd4 40246 cdlemd 40252 cdleme16 40330 cdleme20 40369 cdleme21k 40383 cdleme22cN 40387 cdleme27N 40414 cdleme28c 40417 cdleme29ex 40419 cdleme32fva 40482 cdleme40n 40513 cdlemg15a 40700 cdlemg15 40701 cdlemg16ALTN 40703 cdlemg16z 40704 cdlemg20 40730 cdlemg22 40732 cdlemg29 40750 cdlemg38 40760 cdlemk56 41016 dihord2pre 41270 ismnu 44300 uzwo4 45096 fourierdlem77 46227 |
| Copyright terms: Public domain | W3C validator |