![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl1 1182 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: pythagtriplem4 16748 mply1topmatcl 22617 nolt02o 27532 nogt01o 27533 cofsslt 27742 coinitsslt 27743 brbtwn2 28587 ax5seg 28620 br8 35187 btwndiff 35460 ifscgr 35477 seglecgr12im 35543 atlatle 38646 cvlcvr1 38665 atbtwn 38773 3dimlem3 38788 3dimlem3OLDN 38789 4atlem3 38923 4atlem11 38936 4atlem12 38939 2lplnj 38947 paddasslem4 39150 paddasslem10 39156 pmodlem1 39173 llnexchb2lem 39195 pclfinclN 39277 arglem1N 39517 cdlemd4 39528 cdlemd 39534 cdleme16 39612 cdleme20 39651 cdleme21k 39665 cdleme22cN 39669 cdleme27N 39696 cdleme28c 39699 cdleme29ex 39701 cdleme32fva 39764 cdleme40n 39795 cdlemg15a 39982 cdlemg15 39983 cdlemg16ALTN 39985 cdlemg16z 39986 cdlemg20 40012 cdlemg22 40014 cdlemg29 40032 cdlemg38 40042 cdlemk56 40298 dihord2pre 40552 ismnu 43475 uzwo4 44194 fourierdlem77 45350 |
Copyright terms: Public domain | W3C validator |