Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl13 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl13 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pythagtriplem4 16530 mply1topmatcl 21964 brbtwn2 27283 ax5seg 27316 br8 33731 poxp3 33804 nolt02o 33906 nogt01o 33907 cofsslt 34096 coinitsslt 34097 btwndiff 34337 ifscgr 34354 seglecgr12im 34420 atlatle 37342 cvlcvr1 37361 atbtwn 37468 3dimlem3 37483 3dimlem3OLDN 37484 4atlem3 37618 4atlem11 37631 4atlem12 37634 2lplnj 37642 paddasslem4 37845 paddasslem10 37851 pmodlem1 37868 llnexchb2lem 37890 pclfinclN 37972 arglem1N 38212 cdlemd4 38223 cdlemd 38229 cdleme16 38307 cdleme20 38346 cdleme21k 38360 cdleme22cN 38364 cdleme27N 38391 cdleme28c 38394 cdleme29ex 38396 cdleme32fva 38459 cdleme40n 38490 cdlemg15a 38677 cdlemg15 38678 cdlemg16ALTN 38680 cdlemg16z 38681 cdlemg20 38707 cdlemg22 38709 cdlemg29 38727 cdlemg38 38737 cdlemk56 38993 dihord2pre 39247 ismnu 41860 uzwo4 42582 fourierdlem77 43705 |
Copyright terms: Public domain | W3C validator |