| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnurnd | Structured version Visualization version GIF version | ||
| Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnurnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnurnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnurnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| mnurnd.4 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
| Ref | Expression |
|---|---|
| mnurnd | ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnurnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnurnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnurnd.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 3 | elexd 3460 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | 4 | iftrued 4483 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) |
| 6 | 5, 3 | eqeltrd 2831 | . 2 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈) |
| 7 | mnurnd.4 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | |
| 8 | 5 | feq2d 6635 | . . 3 ⊢ (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈 ↔ 𝐹:𝐴⟶𝑈)) |
| 9 | 7, 8 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈) |
| 10 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 11 | 10 | elimel 4545 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
| 12 | 1, 2, 6, 9, 11 | mnurndlem2 44321 | 1 ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ifcif 4475 𝒫 cpw 4550 ∪ cuni 4859 ran crn 5617 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-fr 5569 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: mnugrud 44323 |
| Copyright terms: Public domain | W3C validator |