Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurnd Structured version   Visualization version   GIF version

Theorem mnurnd 44401
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurnd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurnd.2 (𝜑𝑈𝑀)
mnurnd.3 (𝜑𝐴𝑈)
mnurnd.4 (𝜑𝐹:𝐴𝑈)
Assertion
Ref Expression
mnurnd (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurnd
StepHypRef Expression
1 mnurnd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurnd.2 . 2 (𝜑𝑈𝑀)
3 mnurnd.3 . . . . 5 (𝜑𝐴𝑈)
43elexd 3461 . . . 4 (𝜑𝐴 ∈ V)
54iftrued 4482 . . 3 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
65, 3eqeltrd 2833 . 2 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈)
7 mnurnd.4 . . 3 (𝜑𝐹:𝐴𝑈)
85feq2d 6640 . . 3 (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈𝐹:𝐴𝑈))
97, 8mpbird 257 . 2 (𝜑𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈)
10 0ex 5247 . . 3 ∅ ∈ V
1110elimel 4544 . 2 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
121, 2, 6, 9, 11mnurndlem2 44400 1 (𝜑 → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282  ifcif 4474  𝒫 cpw 4549   cuni 4858  ran crn 5620  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-reg 9485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  mnugrud  44402
  Copyright terms: Public domain W3C validator