Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurnd Structured version   Visualization version   GIF version

Theorem mnurnd 42655
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurnd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurnd.2 (𝜑𝑈𝑀)
mnurnd.3 (𝜑𝐴𝑈)
mnurnd.4 (𝜑𝐹:𝐴𝑈)
Assertion
Ref Expression
mnurnd (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurnd
StepHypRef Expression
1 mnurnd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurnd.2 . 2 (𝜑𝑈𝑀)
3 mnurnd.3 . . . . 5 (𝜑𝐴𝑈)
43elexd 3467 . . . 4 (𝜑𝐴 ∈ V)
54iftrued 4498 . . 3 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
65, 3eqeltrd 2834 . 2 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈)
7 mnurnd.4 . . 3 (𝜑𝐹:𝐴𝑈)
85feq2d 6658 . . 3 (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈𝐹:𝐴𝑈))
97, 8mpbird 257 . 2 (𝜑𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈)
10 0ex 5268 . . 3 ∅ ∈ V
1110elimel 4559 . 2 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
121, 2, 6, 9, 11mnurndlem2 42654 1 (𝜑 → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3447  wss 3914  c0 4286  ifcif 4490  𝒫 cpw 4564   cuni 4869  ran crn 5638  wf 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-reg 9536
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-eprel 5541  df-fr 5592  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508
This theorem is referenced by:  mnugrud  42656
  Copyright terms: Public domain W3C validator