| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnurnd | Structured version Visualization version GIF version | ||
| Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnurnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnurnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnurnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| mnurnd.4 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
| Ref | Expression |
|---|---|
| mnurnd | ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnurnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnurnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnurnd.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 3 | elexd 3462 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | 4 | iftrued 4486 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) |
| 6 | 5, 3 | eqeltrd 2828 | . 2 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈) |
| 7 | mnurnd.4 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | |
| 8 | 5 | feq2d 6640 | . . 3 ⊢ (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈 ↔ 𝐹:𝐴⟶𝑈)) |
| 9 | 7, 8 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈) |
| 10 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 11 | 10 | elimel 4548 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
| 12 | 1, 2, 6, 9, 11 | mnurndlem2 44258 | 1 ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ifcif 4478 𝒫 cpw 4553 ∪ cuni 4861 ran crn 5624 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-reg 9503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-eprel 5523 df-fr 5576 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: mnugrud 44260 |
| Copyright terms: Public domain | W3C validator |