![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnurnd | Structured version Visualization version GIF version |
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnurnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnurnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnurnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnurnd.4 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
Ref | Expression |
---|---|
mnurnd | ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnurnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnurnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnurnd.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 3 | elexd 3494 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | 4 | iftrued 4536 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) |
6 | 5, 3 | eqeltrd 2833 | . 2 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈) |
7 | mnurnd.4 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | |
8 | 5 | feq2d 6703 | . . 3 ⊢ (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈 ↔ 𝐹:𝐴⟶𝑈)) |
9 | 7, 8 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈) |
10 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
11 | 10 | elimel 4597 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
12 | 1, 2, 6, 9, 11 | mnurndlem2 43031 | 1 ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 ifcif 4528 𝒫 cpw 4602 ∪ cuni 4908 ran crn 5677 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-reg 9586 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-fr 5631 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: mnugrud 43033 |
Copyright terms: Public domain | W3C validator |