Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurnd Structured version   Visualization version   GIF version

Theorem mnurnd 44272
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurnd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurnd.2 (𝜑𝑈𝑀)
mnurnd.3 (𝜑𝐴𝑈)
mnurnd.4 (𝜑𝐹:𝐴𝑈)
Assertion
Ref Expression
mnurnd (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurnd
StepHypRef Expression
1 mnurnd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurnd.2 . 2 (𝜑𝑈𝑀)
3 mnurnd.3 . . . . 5 (𝜑𝐴𝑈)
43elexd 3471 . . . 4 (𝜑𝐴 ∈ V)
54iftrued 4496 . . 3 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
65, 3eqeltrd 2828 . 2 (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈)
7 mnurnd.4 . . 3 (𝜑𝐹:𝐴𝑈)
85feq2d 6672 . . 3 (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈𝐹:𝐴𝑈))
97, 8mpbird 257 . 2 (𝜑𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈)
10 0ex 5262 . . 3 ∅ ∈ V
1110elimel 4558 . 2 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
121, 2, 6, 9, 11mnurndlem2 44271 1 (𝜑 → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   cuni 4871  ran crn 5639  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-fr 5591  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  mnugrud  44273
  Copyright terms: Public domain W3C validator