Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnurnd | Structured version Visualization version GIF version |
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnurnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnurnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnurnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnurnd.4 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
Ref | Expression |
---|---|
mnurnd | ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnurnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnurnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnurnd.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 3 | elexd 3442 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | 4 | iftrued 4464 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) |
6 | 5, 3 | eqeltrd 2839 | . 2 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈) |
7 | mnurnd.4 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | |
8 | 5 | feq2d 6570 | . . 3 ⊢ (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈 ↔ 𝐹:𝐴⟶𝑈)) |
9 | 7, 8 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈) |
10 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
11 | 10 | elimel 4525 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
12 | 1, 2, 6, 9, 11 | mnurndlem2 41789 | 1 ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ifcif 4456 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-fr 5535 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: mnugrud 41791 |
Copyright terms: Public domain | W3C validator |