Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnurnd | Structured version Visualization version GIF version |
Description: Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnurnd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnurnd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnurnd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnurnd.4 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
Ref | Expression |
---|---|
mnurnd | ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnurnd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnurnd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnurnd.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 3 | elexd 3452 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | 4 | iftrued 4467 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) |
6 | 5, 3 | eqeltrd 2839 | . 2 ⊢ (𝜑 → if(𝐴 ∈ V, 𝐴, ∅) ∈ 𝑈) |
7 | mnurnd.4 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | |
8 | 5 | feq2d 6586 | . . 3 ⊢ (𝜑 → (𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈 ↔ 𝐹:𝐴⟶𝑈)) |
9 | 7, 8 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹:if(𝐴 ∈ V, 𝐴, ∅)⟶𝑈) |
10 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
11 | 10 | elimel 4528 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
12 | 1, 2, 6, 9, 11 | mnurndlem2 41900 | 1 ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ifcif 4459 𝒫 cpw 4533 ∪ cuni 4839 ran crn 5590 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-fr 5544 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: mnugrud 41902 |
Copyright terms: Public domain | W3C validator |