MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsnsgrp Structured version   Visualization version   GIF version

Theorem xrsnsgrp 20981
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.)
Assertion
Ref Expression
xrsnsgrp *𝑠 ∉ Smgrp

Proof of Theorem xrsnsgrp
StepHypRef Expression
1 1xr 11273 . . 3 1 ∈ ℝ*
2 mnfxr 11271 . . 3 -∞ ∈ ℝ*
3 pnfxr 11268 . . 3 +∞ ∈ ℝ*
41, 2, 33pm3.2i 1340 . 2 (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*)
5 xaddcom 13219 . . . . . . . 8 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1))
61, 2, 5mp2an 691 . . . . . . 7 (1 +𝑒 -∞) = (-∞ +𝑒 1)
7 1re 11214 . . . . . . . . 9 1 ∈ ℝ
8 renepnf 11262 . . . . . . . . 9 (1 ∈ ℝ → 1 ≠ +∞)
97, 8ax-mp 5 . . . . . . . 8 1 ≠ +∞
10 xaddmnf2 13208 . . . . . . . 8 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
111, 9, 10mp2an 691 . . . . . . 7 (-∞ +𝑒 1) = -∞
126, 11eqtri 2761 . . . . . 6 (1 +𝑒 -∞) = -∞
1312oveq1i 7419 . . . . 5 ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞)
14 mnfaddpnf 13210 . . . . 5 (-∞ +𝑒 +∞) = 0
1513, 14eqtri 2761 . . . 4 ((1 +𝑒 -∞) +𝑒 +∞) = 0
16 0ne1 12283 . . . 4 0 ≠ 1
1715, 16eqnetri 3012 . . 3 ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1
1814oveq2i 7420 . . . 4 (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0)
19 xaddrid 13220 . . . . 5 (1 ∈ ℝ* → (1 +𝑒 0) = 1)
201, 19ax-mp 5 . . . 4 (1 +𝑒 0) = 1
2118, 20eqtri 2761 . . 3 (1 +𝑒 (-∞ +𝑒 +∞)) = 1
2217, 21neeqtrri 3015 . 2 ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞))
23 xrsbas 20961 . . 3 * = (Base‘ℝ*𝑠)
24 xrsadd 20962 . . 3 +𝑒 = (+g‘ℝ*𝑠)
2523, 24isnsgrp 18614 . 2 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp))
264, 22, 25mp2 9 1 *𝑠 ∉ Smgrp
Colors of variables: wff setvar class
Syntax hints:  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wnel 3047  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111  +∞cpnf 11245  -∞cmnf 11246  *cxr 11247   +𝑒 cxad 13090  *𝑠cxrs 17446  Smgrpcsgrp 18609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-xadd 13093  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-mulr 17211  df-tset 17216  df-ple 17217  df-ds 17219  df-xrs 17448  df-sgrp 18610
This theorem is referenced by:  xrsmgmdifsgrp  20982
  Copyright terms: Public domain W3C validator