![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version |
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11349 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | mnfxr 11347 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | pnfxr 11344 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
5 | xaddcom 13302 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
6 | 1, 2, 5 | mp2an 691 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
7 | 1re 11290 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
8 | renepnf 11338 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
10 | xaddmnf2 13291 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
11 | 1, 9, 10 | mp2an 691 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
12 | 6, 11 | eqtri 2768 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
13 | 12 | oveq1i 7458 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
14 | mnfaddpnf 13293 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
15 | 13, 14 | eqtri 2768 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
16 | 0ne1 12364 | . . . 4 ⊢ 0 ≠ 1 | |
17 | 15, 16 | eqnetri 3017 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
18 | 14 | oveq2i 7459 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
19 | xaddrid 13303 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
21 | 18, 20 | eqtri 2768 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
22 | 17, 21 | neeqtrri 3020 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
23 | xrsbas 21419 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
24 | xrsadd 21420 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
25 | 23, 24 | isnsgrp 18761 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 +𝑒 cxad 13173 ℝ*𝑠cxrs 17560 Smgrpcsgrp 18756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-xadd 13176 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-tset 17330 df-ple 17331 df-ds 17333 df-xrs 17562 df-sgrp 18757 |
This theorem is referenced by: xrsmgmdifsgrp 21444 |
Copyright terms: Public domain | W3C validator |