Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version |
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 10965 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | mnfxr 10963 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | pnfxr 10960 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 1, 2, 3 | 3pm3.2i 1337 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
5 | xaddcom 12903 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
6 | 1, 2, 5 | mp2an 688 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
7 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
8 | renepnf 10954 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
10 | xaddmnf2 12892 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
11 | 1, 9, 10 | mp2an 688 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
12 | 6, 11 | eqtri 2766 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
13 | 12 | oveq1i 7265 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
14 | mnfaddpnf 12894 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
15 | 13, 14 | eqtri 2766 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
16 | 0ne1 11974 | . . . 4 ⊢ 0 ≠ 1 | |
17 | 15, 16 | eqnetri 3013 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
18 | 14 | oveq2i 7266 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
19 | xaddid1 12904 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
21 | 18, 20 | eqtri 2766 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
22 | 17, 21 | neeqtrri 3016 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
23 | xrsbas 20526 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
24 | xrsadd 20527 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
25 | 23, 24 | isnsgrp 18294 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 +𝑒 cxad 12775 ℝ*𝑠cxrs 17128 Smgrpcsgrp 18289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-xrs 17130 df-sgrp 18290 |
This theorem is referenced by: xrsmgmdifsgrp 20547 |
Copyright terms: Public domain | W3C validator |