MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsnsgrp Structured version   Visualization version   GIF version

Theorem xrsnsgrp 21443
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.)
Assertion
Ref Expression
xrsnsgrp *𝑠 ∉ Smgrp

Proof of Theorem xrsnsgrp
StepHypRef Expression
1 1xr 11349 . . 3 1 ∈ ℝ*
2 mnfxr 11347 . . 3 -∞ ∈ ℝ*
3 pnfxr 11344 . . 3 +∞ ∈ ℝ*
41, 2, 33pm3.2i 1339 . 2 (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*)
5 xaddcom 13302 . . . . . . . 8 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1))
61, 2, 5mp2an 691 . . . . . . 7 (1 +𝑒 -∞) = (-∞ +𝑒 1)
7 1re 11290 . . . . . . . . 9 1 ∈ ℝ
8 renepnf 11338 . . . . . . . . 9 (1 ∈ ℝ → 1 ≠ +∞)
97, 8ax-mp 5 . . . . . . . 8 1 ≠ +∞
10 xaddmnf2 13291 . . . . . . . 8 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
111, 9, 10mp2an 691 . . . . . . 7 (-∞ +𝑒 1) = -∞
126, 11eqtri 2768 . . . . . 6 (1 +𝑒 -∞) = -∞
1312oveq1i 7458 . . . . 5 ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞)
14 mnfaddpnf 13293 . . . . 5 (-∞ +𝑒 +∞) = 0
1513, 14eqtri 2768 . . . 4 ((1 +𝑒 -∞) +𝑒 +∞) = 0
16 0ne1 12364 . . . 4 0 ≠ 1
1715, 16eqnetri 3017 . . 3 ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1
1814oveq2i 7459 . . . 4 (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0)
19 xaddrid 13303 . . . . 5 (1 ∈ ℝ* → (1 +𝑒 0) = 1)
201, 19ax-mp 5 . . . 4 (1 +𝑒 0) = 1
2118, 20eqtri 2768 . . 3 (1 +𝑒 (-∞ +𝑒 +∞)) = 1
2217, 21neeqtrri 3020 . 2 ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞))
23 xrsbas 21419 . . 3 * = (Base‘ℝ*𝑠)
24 xrsadd 21420 . . 3 +𝑒 = (+g‘ℝ*𝑠)
2523, 24isnsgrp 18761 . 2 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp))
264, 22, 25mp2 9 1 *𝑠 ∉ Smgrp
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wnel 3052  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   +𝑒 cxad 13173  *𝑠cxrs 17560  Smgrpcsgrp 18756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-xadd 13176  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-xrs 17562  df-sgrp 18757
This theorem is referenced by:  xrsmgmdifsgrp  21444
  Copyright terms: Public domain W3C validator