MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsnsgrp Structured version   Visualization version   GIF version

Theorem xrsnsgrp 21329
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.)
Assertion
Ref Expression
xrsnsgrp *𝑠 ∉ Smgrp

Proof of Theorem xrsnsgrp
StepHypRef Expression
1 1xr 11298 . . 3 1 ∈ ℝ*
2 mnfxr 11296 . . 3 -∞ ∈ ℝ*
3 pnfxr 11293 . . 3 +∞ ∈ ℝ*
41, 2, 33pm3.2i 1337 . 2 (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*)
5 xaddcom 13246 . . . . . . . 8 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1))
61, 2, 5mp2an 691 . . . . . . 7 (1 +𝑒 -∞) = (-∞ +𝑒 1)
7 1re 11239 . . . . . . . . 9 1 ∈ ℝ
8 renepnf 11287 . . . . . . . . 9 (1 ∈ ℝ → 1 ≠ +∞)
97, 8ax-mp 5 . . . . . . . 8 1 ≠ +∞
10 xaddmnf2 13235 . . . . . . . 8 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
111, 9, 10mp2an 691 . . . . . . 7 (-∞ +𝑒 1) = -∞
126, 11eqtri 2756 . . . . . 6 (1 +𝑒 -∞) = -∞
1312oveq1i 7425 . . . . 5 ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞)
14 mnfaddpnf 13237 . . . . 5 (-∞ +𝑒 +∞) = 0
1513, 14eqtri 2756 . . . 4 ((1 +𝑒 -∞) +𝑒 +∞) = 0
16 0ne1 12308 . . . 4 0 ≠ 1
1715, 16eqnetri 3007 . . 3 ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1
1814oveq2i 7426 . . . 4 (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0)
19 xaddrid 13247 . . . . 5 (1 ∈ ℝ* → (1 +𝑒 0) = 1)
201, 19ax-mp 5 . . . 4 (1 +𝑒 0) = 1
2118, 20eqtri 2756 . . 3 (1 +𝑒 (-∞ +𝑒 +∞)) = 1
2217, 21neeqtrri 3010 . 2 ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞))
23 xrsbas 21305 . . 3 * = (Base‘ℝ*𝑠)
24 xrsadd 21306 . . 3 +𝑒 = (+g‘ℝ*𝑠)
2523, 24isnsgrp 18677 . 2 ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp))
264, 22, 25mp2 9 1 *𝑠 ∉ Smgrp
Colors of variables: wff setvar class
Syntax hints:  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wnel 3042  (class class class)co 7415  cr 11132  0cc0 11133  1c1 11134  +∞cpnf 11270  -∞cmnf 11271  *cxr 11272   +𝑒 cxad 13117  *𝑠cxrs 17476  Smgrpcsgrp 18672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-xadd 13120  df-fz 13512  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-xrs 17478  df-sgrp 18673
This theorem is referenced by:  xrsmgmdifsgrp  21330
  Copyright terms: Public domain W3C validator