| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version | ||
| Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11209 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | mnfxr 11207 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | pnfxr 11204 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
| 5 | xaddcom 13176 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
| 7 | 1re 11150 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 8 | renepnf 11198 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
| 10 | xaddmnf2 13165 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
| 11 | 1, 9, 10 | mp2an 692 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
| 12 | 6, 11 | eqtri 2752 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
| 13 | 12 | oveq1i 7379 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
| 14 | mnfaddpnf 13167 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 15 | 13, 14 | eqtri 2752 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
| 16 | 0ne1 12233 | . . . 4 ⊢ 0 ≠ 1 | |
| 17 | 15, 16 | eqnetri 2995 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
| 18 | 14 | oveq2i 7380 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
| 19 | xaddrid 13177 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
| 20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
| 21 | 18, 20 | eqtri 2752 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
| 22 | 17, 21 | neeqtrri 2998 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
| 23 | xrsbas 17545 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 24 | xrsadd 21327 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 25 | 23, 24 | isnsgrp 18632 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
| 26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 +𝑒 cxad 13046 ℝ*𝑠cxrs 17439 Smgrpcsgrp 18627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-xadd 13049 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-xrs 17441 df-sgrp 18628 |
| This theorem is referenced by: xrsmgmdifsgrp 21350 |
| Copyright terms: Public domain | W3C validator |