| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version | ||
| Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11240 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | pnfxr 11235 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
| 5 | xaddcom 13207 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
| 7 | 1re 11181 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 8 | renepnf 11229 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
| 10 | xaddmnf2 13196 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
| 11 | 1, 9, 10 | mp2an 692 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
| 12 | 6, 11 | eqtri 2753 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
| 13 | 12 | oveq1i 7400 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
| 14 | mnfaddpnf 13198 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 15 | 13, 14 | eqtri 2753 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
| 16 | 0ne1 12264 | . . . 4 ⊢ 0 ≠ 1 | |
| 17 | 15, 16 | eqnetri 2996 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
| 18 | 14 | oveq2i 7401 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
| 19 | xaddrid 13208 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
| 20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
| 21 | 18, 20 | eqtri 2753 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
| 22 | 17, 21 | neeqtrri 2999 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
| 23 | xrsbas 21302 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 24 | xrsadd 21303 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 25 | 23, 24 | isnsgrp 18657 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
| 26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∉ wnel 3030 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 +𝑒 cxad 13077 ℝ*𝑠cxrs 17470 Smgrpcsgrp 18652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-xadd 13080 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-xrs 17472 df-sgrp 18653 |
| This theorem is referenced by: xrsmgmdifsgrp 21327 |
| Copyright terms: Public domain | W3C validator |