| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version | ||
| Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11174 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | mnfxr 11172 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
| 5 | xaddcom 13142 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
| 7 | 1re 11115 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 8 | renepnf 11163 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
| 10 | xaddmnf2 13131 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
| 11 | 1, 9, 10 | mp2an 692 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
| 12 | 6, 11 | eqtri 2752 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
| 13 | 12 | oveq1i 7359 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
| 14 | mnfaddpnf 13133 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 15 | 13, 14 | eqtri 2752 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
| 16 | 0ne1 12199 | . . . 4 ⊢ 0 ≠ 1 | |
| 17 | 15, 16 | eqnetri 2995 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
| 18 | 14 | oveq2i 7360 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
| 19 | xaddrid 13143 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
| 20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
| 21 | 18, 20 | eqtri 2752 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
| 22 | 17, 21 | neeqtrri 2998 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
| 23 | xrsbas 17510 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 24 | xrsadd 21292 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 25 | 23, 24 | isnsgrp 18597 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
| 26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 +𝑒 cxad 13012 ℝ*𝑠cxrs 17404 Smgrpcsgrp 18592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-xadd 13015 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-xrs 17406 df-sgrp 18593 |
| This theorem is referenced by: xrsmgmdifsgrp 21315 |
| Copyright terms: Public domain | W3C validator |