![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsnsgrp | Structured version Visualization version GIF version |
Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
Ref | Expression |
---|---|
xrsnsgrp | ⊢ ℝ*𝑠 ∉ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11298 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | mnfxr 11296 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | pnfxr 11293 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 1, 2, 3 | 3pm3.2i 1337 | . 2 ⊢ (1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) |
5 | xaddcom 13246 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (1 +𝑒 -∞) = (-∞ +𝑒 1)) | |
6 | 1, 2, 5 | mp2an 691 | . . . . . . 7 ⊢ (1 +𝑒 -∞) = (-∞ +𝑒 1) |
7 | 1re 11239 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
8 | renepnf 11287 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 1 ≠ +∞ |
10 | xaddmnf2 13235 | . . . . . . . 8 ⊢ ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞) | |
11 | 1, 9, 10 | mp2an 691 | . . . . . . 7 ⊢ (-∞ +𝑒 1) = -∞ |
12 | 6, 11 | eqtri 2756 | . . . . . 6 ⊢ (1 +𝑒 -∞) = -∞ |
13 | 12 | oveq1i 7425 | . . . . 5 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = (-∞ +𝑒 +∞) |
14 | mnfaddpnf 13237 | . . . . 5 ⊢ (-∞ +𝑒 +∞) = 0 | |
15 | 13, 14 | eqtri 2756 | . . . 4 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) = 0 |
16 | 0ne1 12308 | . . . 4 ⊢ 0 ≠ 1 | |
17 | 15, 16 | eqnetri 3007 | . . 3 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ 1 |
18 | 14 | oveq2i 7426 | . . . 4 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = (1 +𝑒 0) |
19 | xaddrid 13247 | . . . . 5 ⊢ (1 ∈ ℝ* → (1 +𝑒 0) = 1) | |
20 | 1, 19 | ax-mp 5 | . . . 4 ⊢ (1 +𝑒 0) = 1 |
21 | 18, 20 | eqtri 2756 | . . 3 ⊢ (1 +𝑒 (-∞ +𝑒 +∞)) = 1 |
22 | 17, 21 | neeqtrri 3010 | . 2 ⊢ ((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) |
23 | xrsbas 21305 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
24 | xrsadd 21306 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
25 | 23, 24 | isnsgrp 18677 | . 2 ⊢ ((1 ∈ ℝ* ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (((1 +𝑒 -∞) +𝑒 +∞) ≠ (1 +𝑒 (-∞ +𝑒 +∞)) → ℝ*𝑠 ∉ Smgrp)) |
26 | 4, 22, 25 | mp2 9 | 1 ⊢ ℝ*𝑠 ∉ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∉ wnel 3042 (class class class)co 7415 ℝcr 11132 0cc0 11133 1c1 11134 +∞cpnf 11270 -∞cmnf 11271 ℝ*cxr 11272 +𝑒 cxad 13117 ℝ*𝑠cxrs 17476 Smgrpcsgrp 18672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-xadd 13120 df-fz 13512 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-xrs 17478 df-sgrp 18673 |
This theorem is referenced by: xrsmgmdifsgrp 21330 |
Copyright terms: Public domain | W3C validator |