Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for mgm2nsgrp 18476: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
mgm2nsgrp.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
Ref | Expression |
---|---|
mgm2nsgrplem4 | ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm2nsgrp.s | . . . 4 ⊢ 𝑆 = {𝐴, 𝐵} | |
2 | 1 | hashprdifel 14041 | . . 3 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
3 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) | |
4 | simp2 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
5 | 3, 3, 4 | 3jca 1126 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
7 | simp3 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
8 | mgm2nsgrp.b | . . . . . 6 ⊢ (Base‘𝑀) = 𝑆 | |
9 | mgm2nsgrp.o | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) | |
10 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
11 | 1, 8, 9, 10 | mgm2nsgrplem2 18473 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
12 | 11 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
13 | 1, 8, 9, 10 | mgm2nsgrplem3 18474 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
14 | 13 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
15 | 7, 12, 14 | 3netr4d 3020 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
16 | 2, 15 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
17 | 8 | eqcomi 2747 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
18 | 17, 10 | isnsgrp 18294 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) → 𝑀 ∉ Smgrp)) |
19 | 6, 16, 18 | sylc 65 | 1 ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ifcif 4456 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2c2 11958 ♯chash 13972 Basecbs 16840 +gcplusg 16888 Smgrpcsgrp 18289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-sgrp 18290 |
This theorem is referenced by: mgm2nsgrp 18476 mgmnsgrpex 18485 |
Copyright terms: Public domain | W3C validator |