MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem4 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem4 18475
Description: Lemma 4 for mgm2nsgrp 18476: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem4 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mgm2nsgrplem4
StepHypRef Expression
1 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
21hashprdifel 14041 . . 3 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1134 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1135 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
53, 3, 43jca 1126 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐴𝑆𝐵𝑆))
62, 5syl 17 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐴𝑆𝐵𝑆))
7 simp3 1136 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
8 mgm2nsgrp.b . . . . . 6 (Base‘𝑀) = 𝑆
9 mgm2nsgrp.o . . . . . 6 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
10 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
111, 8, 9, 10mgm2nsgrplem2 18473 . . . . 5 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
12113adant3 1130 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
131, 8, 9, 10mgm2nsgrplem3 18474 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
14133adant3 1130 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
157, 12, 143netr4d 3020 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
162, 15syl 17 . 2 ((♯‘𝑆) = 2 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
178eqcomi 2747 . . 3 𝑆 = (Base‘𝑀)
1817, 10isnsgrp 18294 . 2 ((𝐴𝑆𝐴𝑆𝐵𝑆) → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) → 𝑀 ∉ Smgrp))
196, 16, 18sylc 65 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  ifcif 4456  {cpr 4560  cfv 6418  (class class class)co 7255  cmpo 7257  2c2 11958  chash 13972  Basecbs 16840  +gcplusg 16888  Smgrpcsgrp 18289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-sgrp 18290
This theorem is referenced by:  mgm2nsgrp  18476  mgmnsgrpex  18485
  Copyright terms: Public domain W3C validator