![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for mgm2nsgrp 17852: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
mgm2nsgrp.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
Ref | Expression |
---|---|
mgm2nsgrplem4 | ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ SGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm2nsgrp.s | . . . 4 ⊢ 𝑆 = {𝐴, 𝐵} | |
2 | 1 | hashprdifel 13611 | . . 3 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
3 | simp1 1129 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) | |
4 | simp2 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
5 | 3, 3, 4 | 3jca 1121 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
7 | simp3 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
8 | mgm2nsgrp.b | . . . . . 6 ⊢ (Base‘𝑀) = 𝑆 | |
9 | mgm2nsgrp.o | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) | |
10 | eqid 2797 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
11 | 1, 8, 9, 10 | mgm2nsgrplem2 17849 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
12 | 11 | 3adant3 1125 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
13 | 1, 8, 9, 10 | mgm2nsgrplem3 17850 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
14 | 13 | 3adant3 1125 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
15 | 7, 12, 14 | 3netr4d 3063 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
16 | 2, 15 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
17 | 8 | eqcomi 2806 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
18 | 17, 10 | isnsgrp 17731 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) → 𝑀 ∉ SGrp)) |
19 | 6, 16, 18 | sylc 65 | 1 ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ SGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∉ wnel 3092 ifcif 4387 {cpr 4480 ‘cfv 6232 (class class class)co 7023 ∈ cmpo 7025 2c2 11546 ♯chash 13544 Basecbs 16316 +gcplusg 16398 SGrpcsgrp 17726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-dju 9183 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-hash 13545 df-sgrp 17727 |
This theorem is referenced by: mgm2nsgrp 17852 mgmnsgrpex 17861 |
Copyright terms: Public domain | W3C validator |