MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem4 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem4 18195
Description: Lemma 4 for mgm2nsgrp 18196: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem4 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mgm2nsgrplem4
StepHypRef Expression
1 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
21hashprdifel 13844 . . 3 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1137 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1138 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
53, 3, 43jca 1129 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐴𝑆𝐵𝑆))
62, 5syl 17 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐴𝑆𝐵𝑆))
7 simp3 1139 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
8 mgm2nsgrp.b . . . . . 6 (Base‘𝑀) = 𝑆
9 mgm2nsgrp.o . . . . . 6 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
10 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
111, 8, 9, 10mgm2nsgrplem2 18193 . . . . 5 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
12113adant3 1133 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
131, 8, 9, 10mgm2nsgrplem3 18194 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
14133adant3 1133 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
157, 12, 143netr4d 3011 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
162, 15syl 17 . 2 ((♯‘𝑆) = 2 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
178eqcomi 2747 . . 3 𝑆 = (Base‘𝑀)
1817, 10isnsgrp 18014 . 2 ((𝐴𝑆𝐴𝑆𝐵𝑆) → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) → 𝑀 ∉ Smgrp))
196, 16, 18sylc 65 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wnel 3038  ifcif 4411  {cpr 4515  cfv 6333  (class class class)co 7164  cmpo 7166  2c2 11764  chash 13775  Basecbs 16579  +gcplusg 16661  Smgrpcsgrp 18009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-oadd 8128  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-hash 13776  df-sgrp 18010
This theorem is referenced by:  mgm2nsgrp  18196  mgmnsgrpex  18205
  Copyright terms: Public domain W3C validator