MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem4 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem4 18829
Description: Lemma 4 for mgm2nsgrp 18830: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem4 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mgm2nsgrplem4
StepHypRef Expression
1 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
21hashprdifel 14305 . . 3 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1136 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1137 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
53, 3, 43jca 1128 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐴𝑆𝐵𝑆))
62, 5syl 17 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐴𝑆𝐵𝑆))
7 simp3 1138 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
8 mgm2nsgrp.b . . . . . 6 (Base‘𝑀) = 𝑆
9 mgm2nsgrp.o . . . . . 6 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
10 eqid 2731 . . . . . 6 (+g𝑀) = (+g𝑀)
111, 8, 9, 10mgm2nsgrplem2 18827 . . . . 5 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
12113adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
131, 8, 9, 10mgm2nsgrplem3 18828 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
14133adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
157, 12, 143netr4d 3005 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
162, 15syl 17 . 2 ((♯‘𝑆) = 2 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
178eqcomi 2740 . . 3 𝑆 = (Base‘𝑀)
1817, 10isnsgrp 18631 . 2 ((𝐴𝑆𝐴𝑆𝐵𝑆) → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) → 𝑀 ∉ Smgrp))
196, 16, 18sylc 65 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wnel 3032  ifcif 4472  {cpr 4575  cfv 6481  (class class class)co 7346  cmpo 7348  2c2 12180  chash 14237  Basecbs 17120  +gcplusg 17161  Smgrpcsgrp 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-sgrp 18627
This theorem is referenced by:  mgm2nsgrp  18830  mgmnsgrpex  18839
  Copyright terms: Public domain W3C validator