| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for mgm2nsgrp 18855: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
| mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
| mgm2nsgrp.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
| Ref | Expression |
|---|---|
| mgm2nsgrplem4 | ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgm2nsgrp.s | . . . 4 ⊢ 𝑆 = {𝐴, 𝐵} | |
| 2 | 1 | hashprdifel 14369 | . . 3 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) | |
| 4 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
| 5 | 3, 3, 4 | 3jca 1128 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 7 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
| 8 | mgm2nsgrp.b | . . . . . 6 ⊢ (Base‘𝑀) = 𝑆 | |
| 9 | mgm2nsgrp.o | . . . . . 6 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 11 | 1, 8, 9, 10 | mgm2nsgrplem2 18852 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
| 12 | 11 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) = 𝐴) |
| 13 | 1, 8, 9, 10 | mgm2nsgrplem3 18853 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) = 𝐵) |
| 15 | 7, 12, 14 | 3netr4d 3003 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
| 16 | 2, 15 | syl 17 | . 2 ⊢ ((♯‘𝑆) = 2 → ((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵))) |
| 17 | 8 | eqcomi 2739 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
| 18 | 17, 10 | isnsgrp 18656 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (((𝐴(+g‘𝑀)𝐴)(+g‘𝑀)𝐵) ≠ (𝐴(+g‘𝑀)(𝐴(+g‘𝑀)𝐵)) → 𝑀 ∉ Smgrp)) |
| 19 | 6, 16, 18 | sylc 65 | 1 ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∉ wnel 3030 ifcif 4490 {cpr 4593 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 2c2 12242 ♯chash 14301 Basecbs 17185 +gcplusg 17226 Smgrpcsgrp 18651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-hash 14302 df-sgrp 18652 |
| This theorem is referenced by: mgm2nsgrp 18855 mgmnsgrpex 18864 |
| Copyright terms: Public domain | W3C validator |