MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem4 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem4 18839
Description: Lemma 4 for mgm2nsgrp 18840: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem4 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mgm2nsgrplem4
StepHypRef Expression
1 mgm2nsgrp.s . . . 4 𝑆 = {𝐴, 𝐵}
21hashprdifel 14363 . . 3 ((♯‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 simp1 1135 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝑆)
4 simp2 1136 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐵𝑆)
53, 3, 43jca 1127 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴𝑆𝐴𝑆𝐵𝑆))
62, 5syl 17 . 2 ((♯‘𝑆) = 2 → (𝐴𝑆𝐴𝑆𝐵𝑆))
7 simp3 1137 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
8 mgm2nsgrp.b . . . . . 6 (Base‘𝑀) = 𝑆
9 mgm2nsgrp.o . . . . . 6 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
10 eqid 2731 . . . . . 6 (+g𝑀) = (+g𝑀)
111, 8, 9, 10mgm2nsgrplem2 18837 . . . . 5 ((𝐴𝑆𝐵𝑆) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
12113adant3 1131 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) = 𝐴)
131, 8, 9, 10mgm2nsgrplem3 18838 . . . . 5 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
14133adant3 1131 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) = 𝐵)
157, 12, 143netr4d 3017 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
162, 15syl 17 . 2 ((♯‘𝑆) = 2 → ((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)))
178eqcomi 2740 . . 3 𝑆 = (Base‘𝑀)
1817, 10isnsgrp 18649 . 2 ((𝐴𝑆𝐴𝑆𝐵𝑆) → (((𝐴(+g𝑀)𝐴)(+g𝑀)𝐵) ≠ (𝐴(+g𝑀)(𝐴(+g𝑀)𝐵)) → 𝑀 ∉ Smgrp))
196, 16, 18sylc 65 1 ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wnel 3045  ifcif 4529  {cpr 4631  cfv 6544  (class class class)co 7412  cmpo 7414  2c2 12272  chash 14295  Basecbs 17149  +gcplusg 17202  Smgrpcsgrp 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-sgrp 18645
This theorem is referenced by:  mgm2nsgrp  18840  mgmnsgrpex  18849
  Copyright terms: Public domain W3C validator