Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoeq145d Structured version   Visualization version   GIF version

Theorem isoeq145d 41939
Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.)
Hypotheses
Ref Expression
isoeq145.1 (𝜑𝐹 = 𝐺)
isoeq145.4 (𝜑𝐴 = 𝐶)
isoeq145.5 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
isoeq145d (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))

Proof of Theorem isoeq145d
StepHypRef Expression
1 isoeq145.1 . . 3 (𝜑𝐹 = 𝐺)
2 isoeq1 7298 . . 3 (𝐹 = 𝐺 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
31, 2syl 17 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
4 isoeq145.4 . . 3 (𝜑𝐴 = 𝐶)
5 isoeq4 7301 . . 3 (𝐴 = 𝐶 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
64, 5syl 17 . 2 (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
7 isoeq145.5 . . 3 (𝜑𝐵 = 𝐷)
8 isoeq5 7302 . . 3 (𝐵 = 𝐷 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
97, 8syl 17 . 2 (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
103, 6, 93bitrd 304 1 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541   Isom wiso 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541
This theorem is referenced by:  resisoeq45d  41940
  Copyright terms: Public domain W3C validator