Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoeq145d Structured version   Visualization version   GIF version

Theorem isoeq145d 43401
Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.)
Hypotheses
Ref Expression
isoeq145.1 (𝜑𝐹 = 𝐺)
isoeq145.4 (𝜑𝐴 = 𝐶)
isoeq145.5 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
isoeq145d (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))

Proof of Theorem isoeq145d
StepHypRef Expression
1 isoeq145.1 . . 3 (𝜑𝐹 = 𝐺)
2 isoeq1 7294 . . 3 (𝐹 = 𝐺 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
31, 2syl 17 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
4 isoeq145.4 . . 3 (𝜑𝐴 = 𝐶)
5 isoeq4 7297 . . 3 (𝐴 = 𝐶 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
64, 5syl 17 . 2 (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
7 isoeq145.5 . . 3 (𝜑𝐵 = 𝐷)
8 isoeq5 7298 . . 3 (𝐵 = 𝐷 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
97, 8syl 17 . 2 (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   Isom wiso 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522
This theorem is referenced by:  resisoeq45d  43402
  Copyright terms: Public domain W3C validator