![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isoeq145d | Structured version Visualization version GIF version |
Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
isoeq145.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
isoeq145.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
isoeq145.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
isoeq145d | ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoeq145.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | isoeq1 7310 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
4 | isoeq145.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
5 | isoeq4 7313 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
7 | isoeq145.5 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
8 | isoeq5 7314 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 Isom wiso 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 |
This theorem is referenced by: resisoeq45d 42747 |
Copyright terms: Public domain | W3C validator |