![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isoeq145d | Structured version Visualization version GIF version |
Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
isoeq145.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
isoeq145.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
isoeq145.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
isoeq145d | ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoeq145.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | isoeq1 7310 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
4 | isoeq145.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
5 | isoeq4 7313 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵))) |
7 | isoeq145.5 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
8 | isoeq5 7314 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
10 | 3, 6, 9 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 Isom wiso 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 |
This theorem is referenced by: resisoeq45d 42156 |
Copyright terms: Public domain | W3C validator |