![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resisoeq45d | Structured version Visualization version GIF version |
Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
resisoeq45.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
resisoeq45.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
resisoeq45d | ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resisoeq45.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | reseq2d 5994 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐹 ↾ 𝐶)) |
3 | resisoeq45.5 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 1, 3 | isoeq145d 43367 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1535 ↾ cres 5685 Isom wiso 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 |
This theorem is referenced by: negslem1 43369 |
Copyright terms: Public domain | W3C validator |