![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resisoeq45d | Structured version Visualization version GIF version |
Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
resisoeq45.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
resisoeq45.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
resisoeq45d | ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resisoeq45.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | reseq2d 5982 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐹 ↾ 𝐶)) |
3 | resisoeq45.5 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 1, 3 | isoeq145d 42170 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ↾ cres 5679 Isom wiso 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 |
This theorem is referenced by: negslem1 42172 |
Copyright terms: Public domain | W3C validator |