| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resisoeq45d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
| Ref | Expression |
|---|---|
| resisoeq45.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| resisoeq45.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| resisoeq45d | ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resisoeq45.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | reseq2d 5927 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐹 ↾ 𝐶)) |
| 3 | resisoeq45.5 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 1, 3 | isoeq145d 43460 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ↾ cres 5616 Isom wiso 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 |
| This theorem is referenced by: negslem1 43462 |
| Copyright terms: Public domain | W3C validator |