Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resisoeq45d Structured version   Visualization version   GIF version

Theorem resisoeq45d 42914
Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.)
Hypotheses
Ref Expression
resisoeq45.4 (𝜑𝐴 = 𝐶)
resisoeq45.5 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
resisoeq45d (𝜑 → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)))

Proof of Theorem resisoeq45d
StepHypRef Expression
1 resisoeq45.4 . . 3 (𝜑𝐴 = 𝐶)
21reseq2d 5979 . 2 (𝜑 → (𝐹𝐴) = (𝐹𝐶))
3 resisoeq45.5 . 2 (𝜑𝐵 = 𝐷)
42, 1, 3isoeq145d 42913 1 (𝜑 → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  cres 5674   Isom wiso 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551
This theorem is referenced by:  negslem1  42915
  Copyright terms: Public domain W3C validator