![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resisoeq45d | Structured version Visualization version GIF version |
Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
resisoeq45.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
resisoeq45.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
resisoeq45d | ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resisoeq45.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | reseq2d 5979 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐹 ↾ 𝐶)) |
3 | resisoeq45.5 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 1, 3 | isoeq145d 42913 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ↾ cres 5674 Isom wiso 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 |
This theorem is referenced by: negslem1 42915 |
Copyright terms: Public domain | W3C validator |