| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resisoeq45d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
| Ref | Expression |
|---|---|
| resisoeq45.4 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| resisoeq45.5 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| resisoeq45d | ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resisoeq45.4 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | reseq2d 5952 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐹 ↾ 𝐶)) |
| 3 | resisoeq45.5 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 1, 3 | isoeq145d 43401 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ↾ cres 5642 Isom wiso 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 |
| This theorem is referenced by: negslem1 43403 |
| Copyright terms: Public domain | W3C validator |