![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoeq5 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq5 | ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3 6852 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐴–1-1-onto→𝐶)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐵 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
3 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
4 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 class class class wbr 5166 –1-1-onto→wf1o 6572 ‘cfv 6573 Isom wiso 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-isom 6582 |
This theorem is referenced by: isores3 7371 ordiso 9585 ordtypelem9 9595 ordtypelem10 9596 oiid 9610 iunfictbso 10183 ltweuz 14012 fz1isolem 14510 dvgt0lem2 26062 erdszelem1 35159 erdsze 35170 erdsze2lem1 35171 erdsze2lem2 35172 isoeq145d 43381 alephiso3 43521 fourierdlem50 46077 fourierdlem89 46116 fourierdlem90 46117 fourierdlem91 46118 fourierdlem96 46123 fourierdlem97 46124 fourierdlem98 46125 fourierdlem99 46126 fourierdlem100 46127 fourierdlem108 46135 fourierdlem110 46137 fourierdlem112 46139 fourierdlem113 46140 |
Copyright terms: Public domain | W3C validator |