Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq5 Structured version   Visualization version   GIF version

Theorem isoeq5 6944
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq5 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))

Proof of Theorem isoeq5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq3 6481 . . 3 (𝐵 = 𝐶 → (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1-onto𝐶))
21anbi1d 629 . 2 (𝐵 = 𝐶 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
3 df-isom 6241 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
4 df-isom 6241 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
52, 3, 43bitr4g 315 1 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1525  ∀wral 3107   class class class wbr 4968  –1-1-onto→wf1o 6231  ‘cfv 6232   Isom wiso 6233 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-in 3872  df-ss 3880  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-isom 6241 This theorem is referenced by:  isores3  6958  ordiso  8833  ordtypelem9  8843  ordtypelem10  8844  oiid  8858  iunfictbso  9393  ltweuz  13183  fz1isolem  13671  dvgt0lem2  24287  erdszelem1  32048  erdsze  32059  erdsze2lem1  32060  erdsze2lem2  32061  alephiso3  39424  fourierdlem50  42005  fourierdlem89  42044  fourierdlem90  42045  fourierdlem91  42046  fourierdlem96  42051  fourierdlem97  42052  fourierdlem98  42053  fourierdlem99  42054  fourierdlem100  42055  fourierdlem108  42063  fourierdlem110  42065  fourierdlem112  42067  fourierdlem113  42068
 Copyright terms: Public domain W3C validator