MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq5 Structured version   Visualization version   GIF version

Theorem isoeq5 7318
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq5 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))

Proof of Theorem isoeq5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq3 6824 . . 3 (𝐵 = 𝐶 → (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1-onto𝐶))
21anbi1d 631 . 2 (𝐵 = 𝐶 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
3 df-isom 6553 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
4 df-isom 6553 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
52, 3, 43bitr4g 314 1 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wral 3062   class class class wbr 5149  1-1-ontowf1o 6543  cfv 6544   Isom wiso 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-isom 6553
This theorem is referenced by:  isores3  7332  ordiso  9511  ordtypelem9  9521  ordtypelem10  9522  oiid  9536  iunfictbso  10109  ltweuz  13926  fz1isolem  14422  dvgt0lem2  25520  erdszelem1  34213  erdsze  34224  erdsze2lem1  34225  erdsze2lem2  34226  isoeq145d  42218  alephiso3  42358  fourierdlem50  44920  fourierdlem89  44959  fourierdlem90  44960  fourierdlem91  44961  fourierdlem96  44966  fourierdlem97  44967  fourierdlem98  44968  fourierdlem99  44969  fourierdlem100  44970  fourierdlem108  44978  fourierdlem110  44980  fourierdlem112  44982  fourierdlem113  44983
  Copyright terms: Public domain W3C validator