MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq5 Structured version   Visualization version   GIF version

Theorem isoeq5 7299
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq5 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))

Proof of Theorem isoeq5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq3 6793 . . 3 (𝐵 = 𝐶 → (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1-onto𝐶))
21anbi1d 631 . 2 (𝐵 = 𝐶 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
3 df-isom 6523 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
4 df-isom 6523 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
52, 3, 43bitr4g 314 1 (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3045   class class class wbr 5110  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-isom 6523
This theorem is referenced by:  isores3  7313  ordiso  9476  ordtypelem9  9486  ordtypelem10  9487  oiid  9501  iunfictbso  10074  ltweuz  13933  fz1isolem  14433  dvgt0lem2  25915  erdszelem1  35185  erdsze  35196  erdsze2lem1  35197  erdsze2lem2  35198  isoeq145d  43415  alephiso3  43555  fourierdlem50  46161  fourierdlem89  46200  fourierdlem90  46201  fourierdlem91  46202  fourierdlem96  46207  fourierdlem97  46208  fourierdlem98  46209  fourierdlem99  46210  fourierdlem100  46211  fourierdlem108  46219  fourierdlem110  46221  fourierdlem112  46223  fourierdlem113  46224
  Copyright terms: Public domain W3C validator