![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoeq5 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq5 | ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3 6823 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐴–1-1-onto→𝐶)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐵 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
3 | df-isom 6551 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
4 | df-isom 6551 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∀wral 3056 class class class wbr 5142 –1-1-onto→wf1o 6541 ‘cfv 6542 Isom wiso 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-isom 6551 |
This theorem is referenced by: isores3 7337 ordiso 9531 ordtypelem9 9541 ordtypelem10 9542 oiid 9556 iunfictbso 10129 ltweuz 13950 fz1isolem 14446 dvgt0lem2 25923 erdszelem1 34737 erdsze 34748 erdsze2lem1 34749 erdsze2lem2 34750 isoeq145d 42772 alephiso3 42912 fourierdlem50 45467 fourierdlem89 45506 fourierdlem90 45507 fourierdlem91 45508 fourierdlem96 45513 fourierdlem97 45514 fourierdlem98 45515 fourierdlem99 45516 fourierdlem100 45517 fourierdlem108 45525 fourierdlem110 45527 fourierdlem112 45529 fourierdlem113 45530 |
Copyright terms: Public domain | W3C validator |