Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoeq5 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq5 | ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3 6690 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐴–1-1-onto→𝐶)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐵 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
3 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
4 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∀wral 3063 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-isom 6427 |
This theorem is referenced by: isores3 7186 ordiso 9205 ordtypelem9 9215 ordtypelem10 9216 oiid 9230 iunfictbso 9801 ltweuz 13609 fz1isolem 14103 dvgt0lem2 25072 erdszelem1 33053 erdsze 33064 erdsze2lem1 33065 erdsze2lem2 33066 alephiso3 41055 fourierdlem50 43587 fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 fourierdlem96 43633 fourierdlem97 43634 fourierdlem98 43635 fourierdlem99 43636 fourierdlem100 43637 fourierdlem108 43645 fourierdlem110 43647 fourierdlem112 43649 fourierdlem113 43650 |
Copyright terms: Public domain | W3C validator |