| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoeq5 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Ref | Expression |
|---|---|
| isoeq5 | ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3 6772 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻:𝐴–1-1-onto→𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐵 = 𝐶 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
| 3 | df-isom 6508 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 4 | df-isom 6508 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶) ↔ (𝐻:𝐴–1-1-onto→𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 class class class wbr 5102 –1-1-onto→wf1o 6498 ‘cfv 6499 Isom wiso 6500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-isom 6508 |
| This theorem is referenced by: isores3 7292 ordiso 9445 ordtypelem9 9455 ordtypelem10 9456 oiid 9470 iunfictbso 10043 ltweuz 13902 fz1isolem 14402 dvgt0lem2 25884 erdszelem1 35151 erdsze 35162 erdsze2lem1 35163 erdsze2lem2 35164 isoeq145d 43381 alephiso3 43521 fourierdlem50 46127 fourierdlem89 46166 fourierdlem90 46167 fourierdlem91 46168 fourierdlem96 46173 fourierdlem97 46174 fourierdlem98 46175 fourierdlem99 46176 fourierdlem100 46177 fourierdlem108 46185 fourierdlem110 46187 fourierdlem112 46189 fourierdlem113 46190 |
| Copyright terms: Public domain | W3C validator |