Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isof1oidb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oidb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 6660 | . . . . . 6 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | |
2 | f1fveq 7074 | . . . . . 6 ⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | sylan 583 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) |
4 | fvex 6730 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
5 | 4 | ideq 5721 | . . . . . 6 ⊢ ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦))) |
7 | ideqg 5720 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
8 | 7 | ad2antll 729 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) |
9 | 3, 6, 8 | 3bitr4rd 315 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
10 | 9 | ralrimivva 3112 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
11 | 10 | pm4.71i 563 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) |
12 | df-isom 6389 | . 2 ⊢ (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) | |
13 | 11, 12 | bitr4i 281 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 I cid 5454 –1-1→wf1 6377 –1-1-onto→wf1o 6379 ‘cfv 6380 Isom wiso 6381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-f1o 6387 df-fv 6388 df-isom 6389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |