Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isof1oidb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oidb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 6715 | . . . . . 6 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | |
2 | f1fveq 7135 | . . . . . 6 ⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | sylan 580 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) |
4 | fvex 6787 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
5 | 4 | ideq 5761 | . . . . . 6 ⊢ ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦))) |
7 | ideqg 5760 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
8 | 7 | ad2antll 726 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) |
9 | 3, 6, 8 | 3bitr4rd 312 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
10 | 9 | ralrimivva 3123 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
11 | 10 | pm4.71i 560 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) |
12 | df-isom 6442 | . 2 ⊢ (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) | |
13 | 11, 12 | bitr4i 277 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 I cid 5488 –1-1→wf1 6430 –1-1-onto→wf1o 6432 ‘cfv 6433 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-f1o 6440 df-fv 6441 df-isom 6442 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |