![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1oidb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oidb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 6832 | . . . . . 6 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | |
2 | f1fveq 7264 | . . . . . 6 ⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | sylan 579 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) |
4 | fvex 6904 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
5 | 4 | ideq 5852 | . . . . . 6 ⊢ ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦))) |
7 | ideqg 5851 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
8 | 7 | ad2antll 726 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) |
9 | 3, 6, 8 | 3bitr4rd 312 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
10 | 9 | ralrimivva 3199 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
11 | 10 | pm4.71i 559 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) |
12 | df-isom 6552 | . 2 ⊢ (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) | |
13 | 11, 12 | bitr4i 278 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 class class class wbr 5148 I cid 5573 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ‘cfv 6543 Isom wiso 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-f1o 6550 df-fv 6551 df-isom 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |