MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oidb Structured version   Visualization version   GIF version

Theorem isof1oidb 7306
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oidb (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))

Proof of Theorem isof1oidb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6806 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1fveq 7244 . . . . . 6 ((𝐻:𝐴1-1𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
31, 2sylan 580 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
4 fvex 6878 . . . . . . 7 (𝐻𝑦) ∈ V
54ideq 5824 . . . . . 6 ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦))
65a1i 11 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦)))
7 ideqg 5823 . . . . . 6 (𝑦𝐴 → (𝑥 I 𝑦𝑥 = 𝑦))
87ad2antll 729 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦𝑥 = 𝑦))
93, 6, 83bitr4rd 312 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
109ralrimivva 3182 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
1110pm4.71i 559 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
12 df-isom 6528 . 2 (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
1311, 12bitr4i 278 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046   class class class wbr 5115   I cid 5540  1-1wf1 6516  1-1-ontowf1o 6518  cfv 6519   Isom wiso 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-f1o 6526  df-fv 6527  df-isom 6528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator