| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1oidb | Structured version Visualization version GIF version | ||
| Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
| Ref | Expression |
|---|---|
| isof1oidb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 6826 | . . . . . 6 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | |
| 2 | f1fveq 7263 | . . . . . 6 ⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) | |
| 3 | 1, 2 | sylan 580 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) |
| 4 | fvex 6898 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
| 5 | 4 | ideq 5843 | . . . . . 6 ⊢ ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦)) |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦))) |
| 7 | ideqg 5842 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
| 8 | 7 | ad2antll 729 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) |
| 9 | 3, 6, 8 | 3bitr4rd 312 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
| 10 | 9 | ralrimivva 3189 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
| 11 | 10 | pm4.71i 559 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) |
| 12 | df-isom 6549 | . 2 ⊢ (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) | |
| 13 | 11, 12 | bitr4i 278 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 class class class wbr 5123 I cid 5557 –1-1→wf1 6537 –1-1-onto→wf1o 6539 ‘cfv 6540 Isom wiso 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-f1o 6547 df-fv 6548 df-isom 6549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |