MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oidb Structured version   Visualization version   GIF version

Theorem isof1oidb 7324
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oidb (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))

Proof of Theorem isof1oidb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6832 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1fveq 7264 . . . . . 6 ((𝐻:𝐴1-1𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
31, 2sylan 579 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
4 fvex 6904 . . . . . . 7 (𝐻𝑦) ∈ V
54ideq 5852 . . . . . 6 ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦))
65a1i 11 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦)))
7 ideqg 5851 . . . . . 6 (𝑦𝐴 → (𝑥 I 𝑦𝑥 = 𝑦))
87ad2antll 726 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦𝑥 = 𝑦))
93, 6, 83bitr4rd 312 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
109ralrimivva 3199 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
1110pm4.71i 559 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
12 df-isom 6552 . 2 (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
1311, 12bitr4i 278 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060   class class class wbr 5148   I cid 5573  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543   Isom wiso 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-f1o 6550  df-fv 6551  df-isom 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator