MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isof1oidb Structured version   Visualization version   GIF version

Theorem isof1oidb 7351
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
Assertion
Ref Expression
isof1oidb (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))

Proof of Theorem isof1oidb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6855 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1fveq 7289 . . . . . 6 ((𝐻:𝐴1-1𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
31, 2sylan 580 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) = (𝐻𝑦) ↔ 𝑥 = 𝑦))
4 fvex 6927 . . . . . . 7 (𝐻𝑦) ∈ V
54ideq 5870 . . . . . 6 ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦))
65a1i 11 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) I (𝐻𝑦) ↔ (𝐻𝑥) = (𝐻𝑦)))
7 ideqg 5869 . . . . . 6 (𝑦𝐴 → (𝑥 I 𝑦𝑥 = 𝑦))
87ad2antll 729 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦𝑥 = 𝑦))
93, 6, 83bitr4rd 312 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
109ralrimivva 3202 . . 3 (𝐻:𝐴1-1-onto𝐵 → ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦)))
1110pm4.71i 559 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
12 df-isom 6578 . 2 (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 I 𝑦 ↔ (𝐻𝑥) I (𝐻𝑦))))
1311, 12bitr4i 278 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2108  wral 3061   class class class wbr 5151   I cid 5586  1-1wf1 6566  1-1-ontowf1o 6568  cfv 6569   Isom wiso 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-f1o 6576  df-fv 6577  df-isom 6578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator