![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1oidb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oidb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 6863 | . . . . . 6 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | |
2 | f1fveq 7301 | . . . . . 6 ⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | sylan 579 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) = (𝐻‘𝑦) ↔ 𝑥 = 𝑦)) |
4 | fvex 6935 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
5 | 4 | ideq 5877 | . . . . . 6 ⊢ ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) I (𝐻‘𝑦) ↔ (𝐻‘𝑥) = (𝐻‘𝑦))) |
7 | ideqg 5876 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
8 | 7 | ad2antll 728 | . . . . 5 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) |
9 | 3, 6, 8 | 3bitr4rd 312 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
10 | 9 | ralrimivva 3208 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦))) |
11 | 10 | pm4.71i 559 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) |
12 | df-isom 6584 | . 2 ⊢ (𝐻 Isom I , I (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 I 𝑦 ↔ (𝐻‘𝑥) I (𝐻‘𝑦)))) | |
13 | 11, 12 | bitr4i 278 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 I cid 5592 –1-1→wf1 6572 –1-1-onto→wf1o 6574 ‘cfv 6575 Isom wiso 6576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-f1o 6582 df-fv 6583 df-isom 6584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |