MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isorel Structured version   Visualization version   GIF version

Theorem isorel 7266
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isorel ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))

Proof of Theorem isorel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6495 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simprbi 496 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3 breq1 5096 . . . 4 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
4 fveq2 6828 . . . . 5 (𝑥 = 𝐶 → (𝐻𝑥) = (𝐻𝐶))
54breq1d 5103 . . . 4 (𝑥 = 𝐶 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝑦)))
63, 5bibi12d 345 . . 3 (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦))))
7 breq2 5097 . . . 4 (𝑦 = 𝐷 → (𝐶𝑅𝑦𝐶𝑅𝐷))
8 fveq2 6828 . . . . 5 (𝑦 = 𝐷 → (𝐻𝑦) = (𝐻𝐷))
98breq2d 5105 . . . 4 (𝑦 = 𝐷 → ((𝐻𝐶)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
107, 9bibi12d 345 . . 3 (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
116, 10rspc2v 3584 . 2 ((𝐶𝐴𝐷𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
122, 11mpan9 506 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-isom 6495
This theorem is referenced by:  soisores  7267  isomin  7277  isoini  7278  isopolem  7285  isosolem  7287  weniso  7294  smoiso  8288  supisolem  9365  ordiso2  9408  cantnflt  9569  cantnfp1lem3  9577  cantnflem1b  9583  cantnflem1  9586  wemapwe  9594  cnfcomlem  9596  cnfcom  9597  cnfcom3lem  9600  fpwwe2lem5  10533  fpwwe2lem6  10534  fpwwe2lem8  10536  leisorel  14369  seqcoll  14373  seqcoll2  14374  isercoll  15577  ordthmeolem  23717  iccpnfhmeo  24871  xrhmeo  24872  dvcnvrelem1  25950  dvcvx  25953  isoun  32687  erdszelem8  35263  erdsze2lem2  35269  cantnfresb  43441  fourierdlem20  46249  fourierdlem46  46274  fourierdlem50  46278  fourierdlem63  46291  fourierdlem64  46292  fourierdlem65  46293  fourierdlem76  46304  fourierdlem79  46307  fourierdlem102  46330  fourierdlem103  46331  fourierdlem104  46332  fourierdlem114  46342
  Copyright terms: Public domain W3C validator