MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isorel Structured version   Visualization version   GIF version

Theorem isorel 7177
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isorel ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))

Proof of Theorem isorel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6427 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simprbi 496 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3 breq1 5073 . . . 4 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
4 fveq2 6756 . . . . 5 (𝑥 = 𝐶 → (𝐻𝑥) = (𝐻𝐶))
54breq1d 5080 . . . 4 (𝑥 = 𝐶 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝑦)))
63, 5bibi12d 345 . . 3 (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦))))
7 breq2 5074 . . . 4 (𝑦 = 𝐷 → (𝐶𝑅𝑦𝐶𝑅𝐷))
8 fveq2 6756 . . . . 5 (𝑦 = 𝐷 → (𝐻𝑦) = (𝐻𝐷))
98breq2d 5082 . . . 4 (𝑦 = 𝐷 → ((𝐻𝐶)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
107, 9bibi12d 345 . . 3 (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
116, 10rspc2v 3562 . 2 ((𝐶𝐴𝐷𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
122, 11mpan9 506 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-isom 6427
This theorem is referenced by:  soisores  7178  isomin  7188  isoini  7189  isopolem  7196  isosolem  7198  weniso  7205  smoiso  8164  supisolem  9162  ordiso2  9204  cantnflt  9360  cantnfp1lem3  9368  cantnflem1b  9374  cantnflem1  9377  wemapwe  9385  cnfcomlem  9387  cnfcom  9388  cnfcom3lem  9391  fpwwe2lem5  10322  fpwwe2lem6  10323  fpwwe2lem8  10325  leisorel  14102  seqcoll  14106  seqcoll2  14107  isercoll  15307  ordthmeolem  22860  iccpnfhmeo  24014  xrhmeo  24015  dvcnvrelem1  25086  dvcvx  25089  isoun  30936  erdszelem8  33060  erdsze2lem2  33066  fourierdlem20  43558  fourierdlem46  43583  fourierdlem50  43587  fourierdlem63  43600  fourierdlem64  43601  fourierdlem65  43602  fourierdlem76  43613  fourierdlem79  43616  fourierdlem102  43639  fourierdlem103  43640  fourierdlem104  43641  fourierdlem114  43651
  Copyright terms: Public domain W3C validator