| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isorel | Structured version Visualization version GIF version | ||
| Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isorel | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6539 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 3 | breq1 5122 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
| 4 | fveq2 6875 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐻‘𝑥) = (𝐻‘𝐶)) | |
| 5 | 4 | breq1d 5129 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦))) |
| 6 | 3, 5 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)))) |
| 7 | breq2 5123 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶𝑅𝑦 ↔ 𝐶𝑅𝐷)) | |
| 8 | fveq2 6875 | . . . . 5 ⊢ (𝑦 = 𝐷 → (𝐻‘𝑦) = (𝐻‘𝐷)) | |
| 9 | 8 | breq2d 5131 | . . . 4 ⊢ (𝑦 = 𝐷 → ((𝐻‘𝐶)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| 10 | 7, 9 | bibi12d 345 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 11 | 6, 10 | rspc2v 3612 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 12 | 2, 11 | mpan9 506 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 –1-1-onto→wf1o 6529 ‘cfv 6530 Isom wiso 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-isom 6539 |
| This theorem is referenced by: soisores 7319 isomin 7329 isoini 7330 isopolem 7337 isosolem 7339 weniso 7346 smoiso 8374 supisolem 9484 ordiso2 9527 cantnflt 9684 cantnfp1lem3 9692 cantnflem1b 9698 cantnflem1 9701 wemapwe 9709 cnfcomlem 9711 cnfcom 9712 cnfcom3lem 9715 fpwwe2lem5 10647 fpwwe2lem6 10648 fpwwe2lem8 10650 leisorel 14476 seqcoll 14480 seqcoll2 14481 isercoll 15682 ordthmeolem 23737 iccpnfhmeo 24892 xrhmeo 24893 dvcnvrelem1 25972 dvcvx 25975 isoun 32625 erdszelem8 35166 erdsze2lem2 35172 cantnfresb 43295 fourierdlem20 46104 fourierdlem46 46129 fourierdlem50 46133 fourierdlem63 46146 fourierdlem64 46147 fourierdlem65 46148 fourierdlem76 46159 fourierdlem79 46162 fourierdlem102 46185 fourierdlem103 46186 fourierdlem104 46187 fourierdlem114 46197 |
| Copyright terms: Public domain | W3C validator |