![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isorel | Structured version Visualization version GIF version |
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6553 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simprbi 495 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
3 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
4 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐻‘𝑥) = (𝐻‘𝐶)) | |
5 | 4 | breq1d 5159 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦))) |
6 | 3, 5 | bibi12d 344 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)))) |
7 | breq2 5153 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶𝑅𝑦 ↔ 𝐶𝑅𝐷)) | |
8 | fveq2 6892 | . . . . 5 ⊢ (𝑦 = 𝐷 → (𝐻‘𝑦) = (𝐻‘𝐷)) | |
9 | 8 | breq2d 5161 | . . . 4 ⊢ (𝑦 = 𝐷 → ((𝐻‘𝐶)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
10 | 7, 9 | bibi12d 344 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
11 | 6, 10 | rspc2v 3623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
12 | 2, 11 | mpan9 505 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 class class class wbr 5149 –1-1-onto→wf1o 6543 ‘cfv 6544 Isom wiso 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-isom 6553 |
This theorem is referenced by: soisores 7328 isomin 7338 isoini 7339 isopolem 7346 isosolem 7348 weniso 7355 smoiso 8366 supisolem 9472 ordiso2 9514 cantnflt 9671 cantnfp1lem3 9679 cantnflem1b 9685 cantnflem1 9688 wemapwe 9696 cnfcomlem 9698 cnfcom 9699 cnfcom3lem 9702 fpwwe2lem5 10634 fpwwe2lem6 10635 fpwwe2lem8 10637 leisorel 14427 seqcoll 14431 seqcoll2 14432 isercoll 15620 ordthmeolem 23527 iccpnfhmeo 24692 xrhmeo 24693 dvcnvrelem1 25768 dvcvx 25771 isoun 32188 erdszelem8 34485 erdsze2lem2 34491 cantnfresb 42378 fourierdlem20 45143 fourierdlem46 45168 fourierdlem50 45172 fourierdlem63 45185 fourierdlem64 45186 fourierdlem65 45187 fourierdlem76 45198 fourierdlem79 45201 fourierdlem102 45224 fourierdlem103 45225 fourierdlem104 45226 fourierdlem114 45236 |
Copyright terms: Public domain | W3C validator |