MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isorel Structured version   Visualization version   GIF version

Theorem isorel 7301
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isorel ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))

Proof of Theorem isorel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6520 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simprbi 496 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3 breq1 5110 . . . 4 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
4 fveq2 6858 . . . . 5 (𝑥 = 𝐶 → (𝐻𝑥) = (𝐻𝐶))
54breq1d 5117 . . . 4 (𝑥 = 𝐶 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝑦)))
63, 5bibi12d 345 . . 3 (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦))))
7 breq2 5111 . . . 4 (𝑦 = 𝐷 → (𝐶𝑅𝑦𝐶𝑅𝐷))
8 fveq2 6858 . . . . 5 (𝑦 = 𝐷 → (𝐻𝑦) = (𝐻𝐷))
98breq2d 5119 . . . 4 (𝑦 = 𝐷 → ((𝐻𝐶)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
107, 9bibi12d 345 . . 3 (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
116, 10rspc2v 3599 . 2 ((𝐶𝐴𝐷𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
122, 11mpan9 506 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-isom 6520
This theorem is referenced by:  soisores  7302  isomin  7312  isoini  7313  isopolem  7320  isosolem  7322  weniso  7329  smoiso  8331  supisolem  9425  ordiso2  9468  cantnflt  9625  cantnfp1lem3  9633  cantnflem1b  9639  cantnflem1  9642  wemapwe  9650  cnfcomlem  9652  cnfcom  9653  cnfcom3lem  9656  fpwwe2lem5  10588  fpwwe2lem6  10589  fpwwe2lem8  10591  leisorel  14425  seqcoll  14429  seqcoll2  14430  isercoll  15634  ordthmeolem  23688  iccpnfhmeo  24843  xrhmeo  24844  dvcnvrelem1  25922  dvcvx  25925  isoun  32625  erdszelem8  35185  erdsze2lem2  35191  cantnfresb  43313  fourierdlem20  46125  fourierdlem46  46150  fourierdlem50  46154  fourierdlem63  46167  fourierdlem64  46168  fourierdlem65  46169  fourierdlem76  46180  fourierdlem79  46183  fourierdlem102  46206  fourierdlem103  46207  fourierdlem104  46208  fourierdlem114  46218
  Copyright terms: Public domain W3C validator