MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isorel Structured version   Visualization version   GIF version

Theorem isorel 7346
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isorel ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))

Proof of Theorem isorel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 6572 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
21simprbi 496 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3 breq1 5151 . . . 4 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
4 fveq2 6907 . . . . 5 (𝑥 = 𝐶 → (𝐻𝑥) = (𝐻𝐶))
54breq1d 5158 . . . 4 (𝑥 = 𝐶 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝑦)))
63, 5bibi12d 345 . . 3 (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦))))
7 breq2 5152 . . . 4 (𝑦 = 𝐷 → (𝐶𝑅𝑦𝐶𝑅𝐷))
8 fveq2 6907 . . . . 5 (𝑦 = 𝐷 → (𝐻𝑦) = (𝐻𝐷))
98breq2d 5160 . . . 4 (𝑦 = 𝐷 → ((𝐻𝐶)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
107, 9bibi12d 345 . . 3 (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻𝐶)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
116, 10rspc2v 3633 . 2 ((𝐶𝐴𝐷𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷))))
122, 11mpan9 506 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  1-1-ontowf1o 6562  cfv 6563   Isom wiso 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-isom 6572
This theorem is referenced by:  soisores  7347  isomin  7357  isoini  7358  isopolem  7365  isosolem  7367  weniso  7374  smoiso  8401  supisolem  9511  ordiso2  9553  cantnflt  9710  cantnfp1lem3  9718  cantnflem1b  9724  cantnflem1  9727  wemapwe  9735  cnfcomlem  9737  cnfcom  9738  cnfcom3lem  9741  fpwwe2lem5  10673  fpwwe2lem6  10674  fpwwe2lem8  10676  leisorel  14496  seqcoll  14500  seqcoll2  14501  isercoll  15701  ordthmeolem  23825  iccpnfhmeo  24990  xrhmeo  24991  dvcnvrelem1  26071  dvcvx  26074  isoun  32717  erdszelem8  35183  erdsze2lem2  35189  cantnfresb  43314  fourierdlem20  46083  fourierdlem46  46108  fourierdlem50  46112  fourierdlem63  46125  fourierdlem64  46126  fourierdlem65  46127  fourierdlem76  46138  fourierdlem79  46141  fourierdlem102  46164  fourierdlem103  46165  fourierdlem104  46166  fourierdlem114  46176
  Copyright terms: Public domain W3C validator