| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isorel | Structured version Visualization version GIF version | ||
| Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isorel | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6490 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 3 | breq1 5094 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐻‘𝑥) = (𝐻‘𝐶)) | |
| 5 | 4 | breq1d 5101 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦))) |
| 6 | 3, 5 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)))) |
| 7 | breq2 5095 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶𝑅𝑦 ↔ 𝐶𝑅𝐷)) | |
| 8 | fveq2 6822 | . . . . 5 ⊢ (𝑦 = 𝐷 → (𝐻‘𝑦) = (𝐻‘𝐷)) | |
| 9 | 8 | breq2d 5103 | . . . 4 ⊢ (𝑦 = 𝐷 → ((𝐻‘𝐶)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| 10 | 7, 9 | bibi12d 345 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝑅𝑦 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 11 | 6, 10 | rspc2v 3588 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 12 | 2, 11 | mpan9 506 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 –1-1-onto→wf1o 6480 ‘cfv 6481 Isom wiso 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-isom 6490 |
| This theorem is referenced by: soisores 7261 isomin 7271 isoini 7272 isopolem 7279 isosolem 7281 weniso 7288 smoiso 8282 supisolem 9358 ordiso2 9401 cantnflt 9562 cantnfp1lem3 9570 cantnflem1b 9576 cantnflem1 9579 wemapwe 9587 cnfcomlem 9589 cnfcom 9590 cnfcom3lem 9593 fpwwe2lem5 10523 fpwwe2lem6 10524 fpwwe2lem8 10526 leisorel 14364 seqcoll 14368 seqcoll2 14369 isercoll 15572 ordthmeolem 23714 iccpnfhmeo 24868 xrhmeo 24869 dvcnvrelem1 25947 dvcvx 25950 isoun 32678 erdszelem8 35230 erdsze2lem2 35236 cantnfresb 43356 fourierdlem20 46164 fourierdlem46 46189 fourierdlem50 46193 fourierdlem63 46206 fourierdlem64 46207 fourierdlem65 46208 fourierdlem76 46219 fourierdlem79 46222 fourierdlem102 46245 fourierdlem103 46246 fourierdlem104 46247 fourierdlem114 46257 |
| Copyright terms: Public domain | W3C validator |